fnets.factor.model {fnets} | R Documentation |
Factor model estimation
Description
Performs factor modelling under either restricted (static) or unrestricted (dynamic) factor models
Usage
fnets.factor.model(
x,
center = TRUE,
fm.restricted = FALSE,
q = c("ic", "er"),
ic.op = NULL,
kern.bw = NULL,
common.args = list(factor.var.order = NULL, max.var.order = NULL, trunc.lags = 20,
n.perm = 10)
)
Arguments
x |
input time series each column representing a time series variable; it is coerced into a ts object |
center |
whether to de-mean the input |
fm.restricted |
whether to estimate a restricted factor model using static PCA |
q |
Either a string specifying the factor number selection method when
or the number of unrestricted factors, see factor.number |
ic.op |
choice of the information criterion penalty, see hl.factor.number or abc.factor.number for further details |
kern.bw |
a positive integer specifying the kernel bandwidth for dynamic PCA;
by default, it is set to |
common.args |
a list specifying the tuning parameters required for estimating the impulse response functions and common shocks. It contains:
|
Details
See Barigozzi, Cho and Owens (2024+) for further details.
Value
an S3 object of class fm
, which contains the following fields:
q |
number of factors |
spec |
if |
acv |
a list containing estimates of the autocovariance matrices for |
loadings |
if |
factors |
if |
mean.x |
if |
References
Ahn, S. C. & Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. Econometrica, 81(3), 1203–1227.
Alessi, L., Barigozzi, M., & Capasso, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statistics & Probability Letters, 80(23-24):1806–1813.
Avarucci, M., Cavicchioli, M., Forni, M., & Zaffaroni, P. (2022) The main business cycle shock(s): Frequency-band estimation of the number of dynamic factors.
Barigozzi, M., Cho, H. & Owens, D. (2024+) FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series. Journal of Business & Economic Statistics (to appear).
Hallin, M. & Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.
Owens, D., Cho, H. & Barigozzi, M. (2024+) fnets: An R Package for Network Estimation and Forecasting via Factor-Adjusted VAR Modelling. The R Journal (to appear).
See Also
Examples
out <- fnets.factor.model(data.restricted, fm.restricted = TRUE)