fm_raw_basis {fmesher} | R Documentation |
Basis functions for mesh manifolds
Description
Calculate basis functions on fm_mesh_1d()
or fm_mesh_2d()
,
without necessarily matching the default function space of the given mesh
object.
Usage
fm_raw_basis(
mesh,
type = "b.spline",
n = 3,
degree = 2,
knot.placement = "uniform.area",
rot.inv = TRUE,
boundary = "free",
free.clamped = TRUE,
...
)
Arguments
mesh |
An |
type |
|
n |
For B-splines, the number of basis functions in each direction (for
1d meshes |
degree |
Degree of B-spline polynomials. See
|
knot.placement |
For B-splines on the sphere, controls the latitudinal
placements of knots. |
rot.inv |
For spherical harmonics on a sphere, |
boundary |
Boundary specification, default is free boundaries. See
|
free.clamped |
If |
... |
Unused |
Value
A matrix with evaluated basis function
Author(s)
Finn Lindgren finn.lindgren@gmail.com
See Also
fm_mesh_1d()
, fm_mesh_2d()
, fm_basis()
Examples
loc <- rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1))
mesh <- fm_mesh_2d(loc, max.edge = 0.15)
basis <- fm_raw_basis(mesh, n = c(4, 5))
proj <- fm_evaluator(mesh, dims = c(10, 10))
image(proj$x, proj$y, fm_evaluate(proj, basis[, 7]), asp = 1)
if (interactive() && require("rgl")) {
plot_rgl(mesh, col = basis[, 7], draw.edges = FALSE, draw.vertices = FALSE)
}