| Resampler {flowml} | R Documentation | 
Resampler
Description
Model validation by repeated bootstrapping
Format
[R6::R6Class] object.
Details
Uses repeated bootstrapping to validate models without a test data set. For each experiment multiple metrics are measured. For classification experiments the confusion matrix is calculated additionally. In order to test hypotheses, either features or the response variable can be permuted.
Active bindings
- permute
- returns the instance variable 'permute'. (character) 
- permute_alphabet
- returns the instance variable 'permute_alphabet'. (character) 
- n_resample
- returns the instance variable 'n_resample'. (integer) 
- fml_method
- returns the instance variable 'fml_method'. (character) 
- fml_type
- returns the instance variable 'fml_type'. (character) 
- fml_type_alphabet
- returns the instance variable 'fml_type_alphabet'. (character) 
- pre_process_lst
- returns the instance variable 'pre_process_lst'. (character) 
- hyper_parameters
- returns the instance variable 'hyper_parameters'. (list) 
- response_var
- returns the instance variable 'response_var'. (character) 
- n_features
- returns the instance variable 'n_features'. (integer) 
- strata_var
- returns the instance variable 'strata_var'. (character) 
- metrics_df
- returns the instance variable 'metrics_df'. (tibble::tibble) 
- confusion_df
- returns the instance variable 'confusion_df'. (tibble::tibble) 
Methods
Public methods
Method new()
checks, if permutation is requested. If true, performs the permutation task.
Checks if ml.type is classification. If true, calculates confusion matrix.
Creates and returns instance of Resampler class.
Usage
Resampler$new(
  n_resample = 500,
  fml_method = "pcr",
  fml_type = "classification",
  hyper_parameters = "list",
  pre_process_lst = c("center", "scale"),
  permute = NULL,
  n_features = 0,
  response_var = "character",
  strata_var = NULL
)Arguments
- n_resample
- number of bootstrap resamples. The default is 500 (integer) 
- fml_method
- ML model that is being used. The default is 'pcr' (character). 
- fml_type
- ML model type. Needs to be 'classification', 'regression' or 'censored'. Default is 'classification' (character). 
- hyper_parameters
- List of model hyper parameters. (list) 
- pre_process_lst
- Vector of pre-processing steps. Default is 'c("center", "scale")' (character). 
- permute
- Permutation method. Needs to be 'none', 'features' or 'response'. (character) 
- n_features
- Number of features to be chosen in the permutation experiment. Default is 0 (integer). 
- response_var
- Response variable of the model (character). 
- strata_var
- Stratification variable (character). 
Returns
Resampler
Method print()
Print instance variables of Resampler class.
Usage
Resampler$print()
Returns
character
Method fit()
Runs the bootstrap analysis based on the instance variables chosen under initialize.
Usage
Resampler$fit(data_df = "tbl_df")
Arguments
- data_df
- data set to be analyzed (tibble::tibble). 
Returns
None
Method clone()
The objects of this class are cloneable with this method.
Usage
Resampler$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Author(s)
Sebastian Malkusch