RegioWeissman {flood} | R Documentation |
Quantile estimation: Weissman's extrapolation
Description
Estimation of the p-quantile based on multiple local Hill estimators and Weissman's extrapolation formula. We assume heavy-tail homogeneity, i.e., all local EVI's are the same.
Usage
RegioWeissman(x, j = 1, p, k, k.qu = 20, type = "evopt", alpha = 0.05)
Arguments
x |
Vector or matrix of observations |
j |
The number of the target site, i.e., if |
p |
The probability of interest; should be between |
k |
Number of relative excesses involved in the estimation of the extreme value
index gamma. If
|
k.qu |
Tuning parameter for estimation of empirical variance; only needed if |
type |
Choose either |
alpha |
Confidence level for confidence interval. |
Value
List of
-
est
Point estimate of p-quantile of column j -
CI
the corresponding alpha-confidence interval -
EVI
estimate of the extreme value index -
k
tail sample size -
p
a probability -
u.kn
(n-k)-th largest observation, where n is the sample length at station j after removing missing values -
description
a short description.
Examples
library("evd")
# sample observations of 75 years at one station:
x <- rgev(75, 0, 1, 0) # x is a vector
RegioWeissman(x=x, p=0.95)
x2 <- c(NA, NA, x[1:60], NA, x[61:75]) # vector of observations with missing values
RegioWeissman(x=x2, p=0.95) # NAs will be removed
# sample observations of 100 years at 4 stations:
set.seed(1053)
x <- matrix(rgev(400, 2, 1, 0.3), ncol=4)
RegioWeissman(x=x, p=0.9, j=3)
# With missing values:
x2 <- x
x2[sample(100, 12),2] <- NA
RegioWeissman(x=x2, p=0.9, j=3)