RegioGEV {flood} | R Documentation |
Regional (or local) parameter and quantile estimation
Description
Calculates regional (or local) parameters of a generalized extreme value (GEV) distribution using (trimmed) L-moments (see TLMoments and parameters) from a vector or matrix of observation. Based on these parameters, a p-quantile of the GEV will be calculated for the jth station.
Usage
RegioGEV(x, p, j = 1, leftrim = 0, rightrim = 0, na.rm = TRUE, ...)
Arguments
x |
vector or matrix of observations (rows: observations, d columns: stations). |
p |
a probability. |
j |
quantile and parameter estimation for the jth
station (jth column of |
leftrim |
integer indicating lower trimming parameter ( |
rightrim |
integer indicating upper trimming parameter ( |
na.rm |
Should missing values be removed? |
... |
additional arguments, see TLMoments. |
Details
The optimal weights will be calculated as described in "Kinsvater, Fried and Lilienthal (2015):
Regional extreme value index estimation and a test of tail homogeneity,
Environmetrics, DOI: 10.1002/env.2376, Section 3.2". If it's not possible to calculate
optimal weights (negative eigenvaules of an estimated covarinace matrix), simple weights
will be calculated: w_j=\frac{n_j}{sum_{j=1}^d n_j}
Value
List of
-
quant
quantile calculation from an estimated GEV with a regional shape-parameter. -
param
estimated parameter vector from a GEV (using L-moments or trimmed L-moments). -
w
optimal or simple weighting (just returned ifx
is a matrix).
Examples
library("evd")
# sample observations of 75 years at one station:
x <- rgev(75) # x is a vector
RegioGEV(x=x, p=0.95)
x2 <- c(NA, NA, x[1:60], NA, x[61:75]) # vector of observations with missing values
RegioGEV(x=x2, p=0.95) # NAs will be removed
# sample observations of 100 years at 4 stations:
set.seed(1053)
x <- matrix(rgev(400, 2, 1, 0.3), ncol=4)
RegioGEV(x=x, p=0.9, j=3, leftrim=0, rightrim=0) # optimal weighting
RegioGEV(x=x, p=0.9, j=3, leftrim=0, rightrim=1) # optimal weighting
# With missing values:
x2 <- x
x2[c(54, 89, 300)] <- NA
RegioGEV(x=x2, p=0.9, j=3, leftrim=0, rightrim=0)
# sample again observations of 100 years at 4 stations:
set.seed(958)
x <- matrix(rgev(400, 2, 1, 0.3), ncol=4)
RegioGEV(x=x, p=0.9, j=3, leftrim=0, rightrim=0) # simple weighting