th_est_ml {flexmet} | R Documentation |
Latent Trait Estimation
Description
Compute latent trait estimates using either maximum likelihood (ML) or expected a posteriori (EAP) trait estimation.
Usage
th_est_ml(dat, bmat, maxncat = 2, cvec = NULL, dvec = NULL, lb = -4, ub = 4)
th_est_eap(
dat,
bmat,
maxncat = 2,
cvec = NULL,
dvec = NULL,
int = int_mat(npts = 33)
)
Arguments
dat |
Data matrix of binary item responses with one column for each item. Alternatively, a vector of binary item responses for one person. |
bmat |
Matrix of FMP item parameters, one row for each item. |
maxncat |
Maximum number of response categories (the first maxncat - 1 columns of bmat are intercepts) |
cvec |
Vector of lower asymptote parameters, one element for each item. |
dvec |
Vector of upper asymptote parameters, one element for each item. |
lb |
Lower bound at which to truncate ML estimates. |
ub |
Upper bound at which to truncate ML estimates. |
int |
Matrix with two columns used for numerical integration in EAP. Column 1 contains the x coordinates and Column 2 contains the densities. |
Value
Matrix with two columns: est and either sem or psd
est |
Latent trait estimate |
sem |
Standard error of measurement (mle estimates) |
psd |
Posterior standard deviation (eap estimates) |
Examples
set.seed(3453)
bmat <- sim_bmat(n_items = 20, k = 0)$bmat
theta <- rnorm(10)
dat <- sim_data(bmat = bmat, theta = theta)
## mle estimates
mles <- th_est_ml(dat = dat, bmat = bmat)
## eap estimates
eaps <- th_est_eap(dat = dat, bmat = bmat)
cor(mles[,1], eaps[,1])
# 0.9967317