| th_est_ml {flexmet} | R Documentation | 
Latent Trait Estimation
Description
Compute latent trait estimates using either maximum likelihood (ML) or expected a posteriori (EAP) trait estimation.
Usage
th_est_ml(dat, bmat, maxncat = 2, cvec = NULL, dvec = NULL, lb = -4, ub = 4)
th_est_eap(
  dat,
  bmat,
  maxncat = 2,
  cvec = NULL,
  dvec = NULL,
  int = int_mat(npts = 33)
)
Arguments
dat | 
 Data matrix of binary item responses with one column for each item. Alternatively, a vector of binary item responses for one person.  | 
bmat | 
 Matrix of FMP item parameters, one row for each item.  | 
maxncat | 
 Maximum number of response categories (the first maxncat - 1 columns of bmat are intercepts)  | 
cvec | 
 Vector of lower asymptote parameters, one element for each item.  | 
dvec | 
 Vector of upper asymptote parameters, one element for each item.  | 
lb | 
 Lower bound at which to truncate ML estimates.  | 
ub | 
 Upper bound at which to truncate ML estimates.  | 
int | 
 Matrix with two columns used for numerical integration in EAP. Column 1 contains the x coordinates and Column 2 contains the densities.  | 
Value
Matrix with two columns: est and either sem or psd
est | 
 Latent trait estimate  | 
sem | 
 Standard error of measurement (mle estimates)  | 
psd | 
 Posterior standard deviation (eap estimates)  | 
Examples
set.seed(3453)
bmat <- sim_bmat(n_items = 20, k = 0)$bmat
theta <- rnorm(10)
dat <- sim_data(bmat = bmat, theta = theta)
## mle estimates
mles <- th_est_ml(dat = dat, bmat = bmat)
## eap estimates
eaps <- th_est_eap(dat = dat, bmat = bmat)
cor(mles[,1], eaps[,1])
# 0.9967317