rimse {flexmet} | R Documentation |
Root Integrated Mean Squared Difference Between FMP IRFs
Description
Compute the root integrated mean squared error (RIMSE) between two FMP IRFs.
Usage
rimse(
bvec1,
bvec2,
ncat = 2,
c1 = NULL,
d1 = NULL,
c2 = NULL,
d2 = NULL,
int = int_mat()
)
Arguments
bvec1 |
Either a vector of FMP item parameters or a function corresponding to a non-FMP IRF. Functions should have exactly one argument, corresponding to the latent trait. |
bvec2 |
Either a vector of FMP item parameters or a function corresponding to a non-FMP IRF. Functions should have exactly one argument, corresponding to the latent trait. |
ncat |
Number of response categories (first ncat - 1 elemnts of bvec1 and bvec2 are intercepts) |
c1 |
Lower asymptote parameter for bvec1. Ignored if bvec1 is a function. |
d1 |
Upper asymptote parameter for bvec1. Ignored if bvec1 is a function. |
c2 |
Lower asymptote parameter for bvec2. Ignored if bvec2 is a function. |
d2 |
Upper asymptote parameter for bvec2. Ignored if bvec2 is a function. |
int |
Matrix with two columns, used for numerical integration. Column 1 is a grid of theta values, column 2 are normalized densities associated with the column 1 values |
Value
Root integrated mean squared difference between two IRFs (dichotomous items) or expected item scores (polytomous items).
References
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630. doi: 10.1007/BF02294494
Examples
set.seed(2342)
bmat <- sim_bmat(n_items = 2, k = 2, ncat = c(2, 5))$bmat
theta <- rnorm(500)
dat <- sim_data(bmat = bmat, theta = theta, maxncat = 5)
# k = 0
fmp0a <- fmp_1(dat = dat[, 1], k = 0, tsur = theta)
fmp0b <- fmp_1(dat = dat[, 2], k = 0, tsur = theta)
# k = 1
fmp1a <- fmp_1(dat = dat[, 1], k = 1, tsur = theta)
fmp1b <- fmp_1(dat = dat[, 2], k = 1, tsur = theta)
## compare estimated curves to the data-generating curve
rimse(fmp0a$bmat, bmat[1, -c(2:4)])
rimse(fmp0b$bmat, bmat[2, ], ncat = 5)
rimse(fmp1a$bmat, bmat[1, -c(2:4)])
rimse(fmp1b$bmat, bmat[2, ], ncat = 5)