fmp {flexmet} | R Documentation |
Estimate FMP Item Parameters
Description
Estimate FMP item parameters for a single item using user-specified theta values (fixed-effects) using fmp_1, or estimate FMP item parameters for multiple items using fixed-effects or random-effects with fmp.
Usage
fmp_1(
dat,
k,
tsur,
start_vals = NULL,
method = "CG",
priors = list(xi = c("none", NaN, NaN), omega = c("none", NaN, NaN), alpha =
c("none", NaN, NaN), tau = c("none", NaN, NaN)),
...
)
fmp(
dat,
k,
start_vals = NULL,
em = TRUE,
eps = 1e-04,
n_quad = 49,
method = "CG",
max_em = 500,
priors = list(xi = c("none", NaN, NaN), omega = c("none", NaN, NaN), alpha =
c("none", NaN, NaN), tau = c("none", NaN, NaN)),
...
)
Arguments
dat |
Vector of item responses for N (# subjects) examinees. Binary data should be coded 0/1, and polytomous data should be coded 0, 1, 2, etc. |
k |
Vector of item complexities for each item, see details. If k < ncol(dat), k's will be recycled. |
tsur |
Vector of N (# subjects) surrogate theta values. |
start_vals |
Start values, For fmp_1, a vector of length 2k+2 in the following order: If k = 0: (xi_1, ..., x_C_i - 1, omega) If k = 1: (xi_1, ..., x_C_i - 1, omega, alpha1, tau1) If k = 2: (xi_1, ..., x_C_i - 1, omega, alpha1, tau1, alpha2, tau2) and so forth. For fmp, add start values for item 1, followed by those for item 2, and so forth. For further help, first fit the model without start values, then inspect the outputted parmat data frame. |
method |
Optimization method passed to optim. |
priors |
List of prior information used to estimate the item parameters. The list should have up to 4 elements named xi, omega, alpha, tau. Each list should be a vector of length 3: the name of the prior distribution ("norm" or "none"), the first parameter of the prior distribution, and the second parameter of the prior distribution. Currently, "norm" and 'none" are the only available prior distributions. |
em |
If "mirt", use the mirt (Chalmers, 2012) package to estimate item parameters. If TRUE, random-effects estimation is used via the EM algorithm. If FALSE, fixed effects estimation is used with theta surrogates. |
eps |
Covergence tolerance for the EM algorithm. The EM algorithm is said to converge is the maximum absolute difference between parameter estimates for successive iterations is less than eps. Ignored if em = FALSE. |
n_quad |
Number of quadrature points for EM integration. Ignored if em = FALSE |
max_em |
Maximum number of EM iterations (for em = TRUE only). |
... |
Additional arguments passed to optim (if em != "mirt") or mirt (if em == "mirt"). |
Details
The FMP item response function for a single item i
with
responses in categories c = 0, ..., C_i - 1
is specified using the
composite function,
P(X_i = c | \theta) = exp(\sum_{v=0}^c(b_0i_{v} + m_i(\theta))) /
(\sum_{u=0}^{C_i - 1} exp(\sum_{v=0}^u(b_{0i_{v}} + m_i(\theta))))
where m(\theta)
is an unbounded and monotonically increasing polynomial
function of the latent trait \theta
, excluding the intercept (s).
The item complexity parameter k
controls the degree of the polynomial:
m(\theta)=b_1\theta+b_2\theta^{2}+...+b_{2k+1}
\theta^{2k+1},
where 2k+1
equals the order of the polynomial,
k
is a nonnegative integer, and
b=(b1,...,b(2k+1))'
are item parameters that define the location and shape of the IRF. The
vector b
is called the b-vector parameterization of the FMP Model.
When k=0
, the FMP IRF equals either the slope-threshold
parameterization of the two-parameter item response model (if maxncat = 2)
or Muraki's (1992) generalized partial credit model (if maxncat > 2).
For m(\theta)
to be a monotonic function, the FMP IRF can also be
expressed as a function of the vector
\gamma = (\xi, \omega, \alpha_1, \tau_1, \alpha_2, \tau_2,
\cdots \alpha_k,\tau_k)'.
The \gamma
vector is called the Greek-letter parameterization of the
FMP model. See Falk & Cai (2016a), Feuerstahler (2016), or Liang & Browne
(2015) for details about the relationship between the b-vector and
Greek-letter parameterizations.
Value
bmat |
Matrix of estimated b-matrix parameters, each row corresponds to an item, and contains b0, b1, ...b(max(k)). |
parmat |
Data frame of parameter estimation information, including the Greek-letter parameterization, starting value, and parameter estimate. |
k |
Vector of item complexities chosen for each item. |
log_lik |
Model log likelihood. |
mod |
If em == "mirt", the mirt object. Otherwise, optimization information, including output from optim. |
AIC |
Model AIC. |
BIC |
Model BIC. |
References
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29. doi: 10.18637/jss.v048.i06
Elphinstone, C. D. (1983). A target distribution model for nonparametric density estimation. Communication in Statistics–Theory and Methods, 12, 161–198. doi: 10.1080/03610928308828450
Elphinstone, C. D. (1985). A method of distribution and density estimation (Unpublished dissertation). University of South Africa, Pretoria, South Africa.
Falk, C. F., & Cai, L. (2016a). Maximum marginal likelihood estimation of a monotonic polynomial generalized partial credit model with applications to multiple group analysis. Psychometrika, 81, 434–460. doi: 10.1007/s11336-014-9428-7
Falk, C. F., & Cai, L. (2016b). Semiparametric item response functions in the context of guessing. Journal of Educational Measurement, 53, 229–247. doi: 10.1111/jedm.12111
Feuerstahler, L. M. (2016). Exploring alternate latent trait metrics with the filtered monotonic polynomial IRT model (Unpublished dissertation). University of Minnesota, Minneapolis, MN. http://hdl.handle.net/11299/182267
Feuerstahler, L. M. (2019). Metric Transformations and the Filtered Monotonic Polynomial Item Response Model. Psychometrika, 84, 105–123. doi: 10.1007/s11336-018-9642-9
Liang, L. (2007). A semi-parametric approach to estimating item response functions (Unpublished dissertation). The Ohio State University, Columbus, OH. Retrieved from https://etd.ohiolink.edu/
Liang, L., & Browne, M. W. (2015). A quasi-parametric method for fitting flexible item response functions. Journal of Educational and Behavioral Statistics, 40, 5–34. doi: 10.3102/1076998614556816
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159–176. doi: 10.1177/014662169201600206
Examples
set.seed(2345)
bmat <- sim_bmat(n_items = 5, k = 2, ncat = 4)$bmat
theta <- rnorm(50)
dat <- sim_data(bmat = bmat, theta = theta, maxncat = 4)
## fixed-effects estimation for item 1
tsur <- get_surrogates(dat)
# k = 0
fmp0_it_1 <- fmp_1(dat = dat[, 1], k = 0, tsur = tsur)
# k = 1
fmp1_it_1 <- fmp_1(dat = dat[, 1], k = 1, tsur = tsur)
## fixed-effects estimation for all items
fmp0_fixed <- fmp(dat = dat, k = 0, em = FALSE)
## random-effects estimation
fmp0_random <- fmp(dat = dat, k = 0, em = TRUE)
## random-effects estimation using mirt's estimation engine
fmp0_mirt <- fmp(dat = dat, k = 0, em = "mirt")