bootFlexclust {flexclust} | R Documentation |
Bootstrap Flexclust Algorithms
Description
Runs clustering algorithms repeatedly for different numbers of clusters on bootstrap replica of the original data and returns corresponding cluster assignments, centroids and (adjusted) Rand indices comparing pairs of partitions.
Usage
bootFlexclust(x, k, nboot=100, correct=TRUE, seed=NULL,
multicore=TRUE, verbose=FALSE, ...)
## S4 method for signature 'bootFlexclust'
summary(object)
## S4 method for signature 'bootFlexclust,missing'
plot(x, y, ...)
## S4 method for signature 'bootFlexclust'
boxplot(x, ...)
## S4 method for signature 'bootFlexclust'
densityplot(x, data, ...)
Arguments
x , k , ... |
Passed to |
nboot |
Number of bootstrap pairs of partitions. |
correct |
Logical, correct the Rand index for agreement by chance also called adjusted Rand index)? |
seed |
If not |
multicore |
If |
verbose |
If |
y , data |
Not used. |
object |
An object of class |
Details
Availability of multicore is checked
when flexclust is loaded. This information is stored and can be
obtained using
getOption("flexclust")$have_multicore
. Set to FALSE
for debugging and more sensible error messages in case something
goes wrong.
Author(s)
Friedrich Leisch
See Also
Examples
## Not run:
## data uniform on unit square
x <- matrix(runif(400), ncol=2)
cl <- FALSE
## to run bootstrap replications on a workstation cluster do the following:
library("parallel")
cl <- makeCluster(2, type = "PSOCK")
clusterCall(cl, function() require("flexclust"))
## 50 bootstrap replicates for speed in example,
## use more for real applications
bcl <- bootFlexclust(x, k=2:7, nboot=50, FUN=cclust, multicore=cl)
bcl
summary(bcl)
## splitting the square into four quadrants should be the most stable
## solution (increase nboot if not)
plot(bcl)
densityplot(bcl, from=0)
## End(Not run)