| StatMixRHLP-class {flamingos} | R Documentation |
A Reference Class which contains statistics of a mixture of RHLP models.
Description
StatMixRHLP contains all the statistics associated to a MixRHLP model, in particular the E-Step (and C-Step) of the (C)EM algorithm.
Fields
pi_jkrArray of size
(nm, R, K)representing the logistic proportion for cluster k.tau_ikMatrix of size
(n, K)giving the posterior probabilities (fuzzy segmentation matrix) that the curve\boldsymbol{y}_{i}originates from thek-th RHLP model.z_ikHard segmentation logical matrix of dimension
(n, K)obtained by the Maximum a posteriori (MAP) rule:z\_ik = 1 \ \textrm{if} \ z\_i = \textrm{arg} \ \textrm{max}_{k} \ tau\_ik;\ 0 \ \textrm{otherwise}.klasColumn matrix of the labels issued from
z_ik. Its elements areklas[i] = z\_i,i = 1,\dots,n.gamma_ijkrArray of size
(nm, R, K)giving the posterior probabilities that the observation\boldsymbol{y}_{ij}originates from ther-th regime of thek-th RHLP model.polynomialsArray of size
(m, R, K)giving the values of the estimated polynomial regression components.weighted_polynomialsArray of size
(m, R, K)giving the values of the estimated polynomial regression components weighted by the prior probabilitiespi_jkr.EyMatrix of size (m, K).
Eyis the curve expectation (estimated signal): sum of the polynomial components weighted by the logistic probabilitiespi_jkr.loglikNumeric. Observed-data log-likelihood of the MixRHLP model.
com_loglikNumeric. Complete-data log-likelihood of the MixRHLP model.
stored_loglikNumeric vector. Stored values of the log-likelihood at each EM iteration.
stored_com_loglikNumeric vector. Stored values of the Complete log-likelihood at each EM iteration.
BICNumeric. Value of BIC (Bayesian Information Criterion).
ICLNumeric. Value of ICL (Integrated Completed Likelihood).
AICNumeric. Value of AIC (Akaike Information Criterion).
log_fk_yijMatrix of size
(n, K)giving the values of the probability density functionf(\boldsymbol{y}_{i} | z_i = k, \boldsymbol{x}, \boldsymbol{\Psi}),i = 1,\dots,n.log_alphak_fk_yijMatrix of size
(n, K)giving the values of the logarithm of the joint probability density functionf(\boldsymbol{y}_{i}, \ z_{i} = k | \boldsymbol{x}, \boldsymbol{\Psi}),i = 1,\dots,n.log_gamma_ijkrArray of size
(nm, R, K)giving the logarithm ofgamma_ijkr.
Methods
computeStats(paramMixRHLP)Method used in the EM algorithm to compute statistics based on parameters provided by the object
paramMixRHLPof class ParamMixRHLP.CStep(reg_irls)Method used in the CEM algorithm to update statistics.
EStep(paramMixRHLP)Method used in the EM algorithm to update statistics based on parameters provided by the object
paramMixRHLPof class ParamMixRHLP (prior and posterior probabilities).MAP()MAP calculates values of the fields
z_ikandklasby applying the Maximum A Posteriori Bayes allocation rule.z\_ik = 1 \ \textrm{if} \ z\_i = \textrm{arg} \ \textrm{max}_{k} \ tau\_ik;\ 0 \ \textrm{otherwise}.