| fpAnova {fixedpointproperty} | R Documentation | 
Function to perform ANOVA on fp objects
Description
This function computes Bayes Factors and p-values for within-subjects ANOVA designs, encoded as fp objects.
Usage
fpAnova(object, stat = "BF", na.rm = TRUE, check = TRUE)
Arguments
object | 
 a list of objects from class fpp.  | 
stat | 
 Either "BF" (default), "p", or "both", specificying what statistic to report.  | 
na.rm | 
 Are   | 
check | 
 Should the data be checked for suitability? A warning will be provided if a check is failed.  | 
Details
The function expects the output of fpGet, but in a list. 
Value
A list containing the results of either the Bayesian or frequentist analysis, or both:
BF | 
 The output of   | 
p | 
 The output of   | 
Warning
If check=TRUE, then warnings will be provided if the data are not suitable for correct inferences.
Author(s)
Leendert van Maanen (l.vanmaanen@uu.nl)
References
Van Maanen, L., De Jong, R., Van Rijn, H (2014). How to assess the existence of competing strategies in cognitive tasks: A primer on the fixed-point property. PLOS One, 9, e106113
Van Maanen, L. Couto, J. & Lebetron, M. (2016). Three boundary conditions for computing the fixed-point property in binary mixture data. PLOS One, 11, e0167377.
See Also
fpGet, anovaBF, fpConditionCheck, summary.aov.
Examples
## generate data
p <- c(.1,.5,.9)
rt <- sapply(1:3, function(i) {rnormMix(10000, c(1,2), c(1,1), p[i])})
dat <- data.frame(rt=c(rt), cond=rep(1:3, each=10000), pp=rep(1:50, each=200, times=3))
## compute the list of fpp objects
res <- tapply(1:nrow(dat), dat$pp, function(X) {fpGet(dat[X,], 1000, bw=.75)})
## call fpAnova, with stat="both" to do both a Bayesian and a frequentist test
fpAnova(res, stat="both")