fit_empirical {fitur} | R Documentation |
Fit Empirical Distribution
Description
Fit Empirical Distribution
Usage
fit_empirical(x)
Arguments
x |
integer or double vector |
Value
if integer vector then list of family functions for d, p, q, r, and parameters based on each integer value. if it is a double vector then list of family functions for d, p, q, r, and parameters based on Freedman-Diaconis rule for optimal number of histogram bins.
Examples
set.seed(562)
x <- rpois(100, 5)
empDis <- fit_empirical(x)
# probability density function
plot(empDis$dempDis(0:10),
xlab = 'x',
ylab = 'dempDis')
# cumulative distribution function
plot(x = 0:10,
y = empDis$pempDis(0:10),
#type = 'l',
xlab = 'x',
ylab = 'pempDis')
# quantile function
plot(x = seq(.1, 1, .1),
y = empDis$qempDis(seq(.1, 1, .1)),
type = 'p',
xlab = 'x',
ylab = 'qempDis')
# random sample from fitted distribution
summary(empDis$r(100))
empDis$parameters
set.seed(562)
x <- rexp(100, 1/5)
empCont <- fit_empirical(x)
# probability density function
plot(x = 0:10,
y = empCont$dempCont(0:10),
xlab = 'x',
ylab = 'dempCont')
# cumulative distribution function
plot(x = 0:10,
y = empCont$pempCont(0:10),
#type = 'l',
xlab = 'x',
ylab = 'pempCont')
# quantile function
plot(x = seq(.5, 1, .1),
y = empCont$qempCont(seq(.5, 1, .1)),
type = 'p',
xlab = 'x',
ylab = 'qempCont')
# random sample from fitted distribution
summary(empCont$r(100))
empCont$parameters
[Package fitur version 0.6.2 Index]