mazGAMMA {fitODBOD} | R Documentation |
Gamma Distribution
Description
These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for Gamma Distribution bounded between [0,1].
Usage
mazGAMMA(r,c,l)
Arguments
r |
vector of moments. |
c |
single value for shape parameter c. |
l |
single value for shape parameter l. |
Details
The probability density function and cumulative density function of a unit bounded Gamma distribution with random variable P are given by
;
;
The mean the variance are denoted by
The moments about zero is denoted as
Defined as is the gamma function.
Defined as
is the Lower incomplete gamma function.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value
The output of mazGAMMA
gives the moments about zero in vector form.
References
Olshen AC (1938). “Transformations of the pearson type III distribution.” The Annals of Mathematical Statistics, 9(3), 176–200.
See Also
Examples
#plotting the random variables and probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",
xlim = c(0,1),ylim = c(0,4))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),dGAMMA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])
}
dGAMMA(seq(0,1,by=0.01),5,6)$pdf #extracting the pdf values
dGAMMA(seq(0,1,by=0.01),5,6)$mean #extracting the mean
dGAMMA(seq(0,1,by=0.01),5,6)$var #extracting the variance
#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",
xlim = c(0,1),ylim = c(0,1))
for (i in 1:4)
{
lines(seq(0,1,by=0.01),pGAMMA(seq(0,1,by=0.01),a[i],a[i]),col = col[i])
}
pGAMMA(seq(0,1,by=0.01),5,6) #acquiring the cumulative probability values
mazGAMMA(1.4,5,6) #acquiring the moment about zero values
mazGAMMA(2,5,6)-mazGAMMA(1,5,6)^2 #acquiring the variance for a=5,b=6
#only the integer value of moments is taken here because moments cannot be decimal
mazGAMMA(1.9,5.5,6)