fitLMBin {fitODBOD} | R Documentation |
Fitting the Lovinson Multiplicative Binomial Distribution when binomial random variable, frequency, probability of success and theta parameter are given
Description
The function will fit the Lovinson Multiplicative Binomial distribution when random variables, corresponding frequencies, probability of success and phi parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value and degree of freedom value so that it can be seen if this distribution fits the data.
Usage
fitLMBin(x,obs.freq,p,phi)
Arguments
x |
vector of binomial random variables. |
obs.freq |
vector of frequencies. |
p |
single value for probability of success. |
phi |
single value for phi parameter. |
Details
obs.freq \ge 0
x = 0,1,2,..
0 < p < 1
0 < phi
Value
The output of fitLMBin
gives the class format fitLMB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitLMB
fitted probability values of dLMBin
.
NegLL
Negative Log Likelihood value.
p
estimated probability value.
phi
estimated phi parameter value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
References
Elamir EA (2013). “Multiplicative-Binomial Distribution: Some Results on Characterization, Inference and Random Data Generation.” Journal of Statistical Theory and Applications, 12(1), 92–105.
See Also
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLELMBin(x=No.D.D,freq=Obs.fre.1,p=0.1,phi=.3)
pLMBin=bbmle::coef(parameters)[1] #assigning the estimated probability value
phiLMBin <- bbmle::coef(parameters)[2] #assigning the estimated phi value
#fitting when the random variable,frequencies,probability and phi are given
results <- fitLMBin(No.D.D,Obs.fre.1,pLMBin,phiLMBin)
results
#extracting the AIC value
AIC(results)
#extract fitted values
fitted(results)