fitGammaBin {fitODBOD} | R Documentation |
Fitting the Gamma Binomial distribution when binomial random variable, frequency and shape parameters are given
Description
The function will fit the Gamma Binomial Distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.
Usage
fitGammaBin(x,obs.freq,c,l)
Arguments
x |
vector of binomial random variables. |
obs.freq |
vector of frequencies. |
c |
single value for shape parameter c. |
l |
single value for shape parameter l. |
Details
0 < c,l
x = 0,1,2,...
obs.freq \ge 0
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value
The output of fitGammaBin
gives the class format fitGaB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitMB
fitted values of dGammaBin
.
NegLL
Negative Log Likelihood value.
c
estimated value for shape parameter c.
l
estimated value for shape parameter l.
AIC
AIC value.
over.dis.para
over dispersion value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to
extract specific outputs.
References
Grassia A (1977). “On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions.” Australian Journal of Statistics, 19(2), 108–114.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEGammaBin(x=No.D.D,freq=Obs.fre.1,c=0.1,l=0.1)
cGBin <- bbmle::coef(parameters)[1] #assigning the estimated c
lGBin <- bbmle::coef(parameters)[2] #assigning the estimated l
#fitting when the random variable,frequencies,shape parameter values are given.
results <- fitGammaBin(No.D.D,Obs.fre.1,cGBin,lGBin)
results
#extracting the expected frequencies
fitted(results)
#extracting the residuals
residuals(results)