GenerateBOD {fitODBOD} | R Documentation |
Generate Overdispersed Binomial Outcome Data
Description
Using a three step algorithm to generate overdispersed binomial outcome data. When the number of frequencies, binomial random variable, probability of success and overdispersion are given.
Usage
GenerateBOD(N,n,pi,rho)
Arguments
N |
single value for number of total frequencies |
n |
single value for binomial random variable |
pi |
single value for probability of success |
rho |
single value for overdispersion parameter |
Details
The generated binomial random variables are overdispersed based on for the probability of
success
.
Step 1: Solve the following equation for a given ,
For where
is the cumulative distribution function of the
standard bivariate normal random variable with correlation coefficient
, and
denotes
the
quantile of the standard normal distribution.
Step 2: Generate $n$-dimensional multivariate normal random variables,
with mean
and constant correlation matrix
for
where the elements of
are
for
.
Step 3: Now for each define
if
, or
otherwise. Then, it can be showed that the random variable
is overdispersed relative to the Binomial distribution.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value
The output of GenerateBOD
gives a vector of overdispersed binomial random variables
References
Manoj C, Wijekoon P, Yapa RD (2013). “The McDonald generalized beta-binomial distribution: A new binomial mixture distribution and simulation based comparison with its nested distributions in handling overdispersion.” International journal of statistics and probability, 2(2), 24.
Examples
N <- 500 # Number of observations
n <- 10 # Dimension of multivariate normal random variables
pi <- 0.5 # Probability threshold
rho <- 0.1 # Dispersion parameter
# Generate overdispersed binomial variables
New_overdispersed_data <- GenerateBOD(N, n, pi, rho)
table(New_overdispersed_data)