EstMGFBetaBin {fitODBOD} | R Documentation |
Estimating the shape parameters a and b for Beta-Binomial Distribution
Description
The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.
Usage
EstMGFBetaBin(x,freq)
Arguments
x |
vector of binomial random variables. |
freq |
vector of frequencies. |
Details
a,b > 0
x = 0,1,2,...
freq \ge 0
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Value
The output of EstMGFBetaBin
will produce the class mgf
format consisting
a
shape parameter of beta distribution representing for alpha
b
shape parameter of beta distribution representing for beta
min
Negative loglikelihood value
AIC
AIC value
call
the inputs for the function
Methods print
, summary
, coef
and AIC
can be used to extract
specific outputs.
References
Young-Xu Y, Chan KA (2008). “Pooling overdispersed binomial data to estimate event rate.” BMC medical research methodology, 8, 1–12. Trenkler G (1996). “Continuous univariate distributions.” Computational Statistics and Data Analysis, 21(1), 119–119. HUGHES G, MADDEN L (1993). “Using the beta-binomial distribution to describe aggegated patterns of disease incidence.” Phytopathology, 83(7), 759–763.
See Also
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1)
bbmle::coef(estimate) #extracting the parameters
#estimating the parameters using moment generating function methods
results <- EstMGFBetaBin(No.D.D,Obs.fre.1)
# extract the estimated parameters and summary
coef(results)
summary(results)
AIC(results) #show the AIC value