collect_predictions {finetune} | R Documentation |
Obtain and format results produced by racing functions
Description
Obtain and format results produced by racing functions
Usage
## S3 method for class 'tune_race'
collect_predictions(
x,
...,
summarize = FALSE,
parameters = NULL,
all_configs = FALSE
)
## S3 method for class 'tune_race'
collect_metrics(
x,
...,
summarize = TRUE,
type = c("long", "wide"),
all_configs = FALSE
)
Arguments
x |
The results of |
... |
Not currently used. |
summarize |
A logical; should metrics be summarized over resamples
( |
parameters |
An optional tibble of tuning parameter values that can be
used to filter the predicted values before processing. This tibble should
only have columns for each tuning parameter identifier (e.g. |
all_configs |
A logical: should we return the complete set of model configurations or just those that made it to the end of the race (the default). |
type |
One of |
Details
For collect_metrics()
and collect_predictions()
, when unsummarized,
there are columns for each tuning parameter (using the id
from tune()
,
if any).
collect_metrics()
also has columns .metric
, and .estimator
. When the
results are summarized, there are columns for mean
, n
, and std_err
.
When not summarized, the additional columns for the resampling identifier(s)
and .estimate
.
For collect_predictions()
, there are additional columns for the resampling
identifier(s), columns for the predicted values (e.g., .pred
,
.pred_class
, etc.), and a column for the outcome(s) using the original
column name(s) in the data.
collect_predictions()
can summarize the various results over
replicate out-of-sample predictions. For example, when using the bootstrap,
each row in the original training set has multiple holdout predictions
(across assessment sets). To convert these results to a format where every
training set same has a single predicted value, the results are averaged
over replicate predictions.
For regression cases, the numeric predictions are simply averaged. For classification models, the problem is more complex. When class probabilities are used, these are averaged and then re-normalized to make sure that they add to one. If hard class predictions also exist in the data, then these are determined from the summarized probability estimates (so that they match). If only hard class predictions are in the results, then the mode is used to summarize.
For racing results, it is best to only collect model configurations that finished the race (i.e., were completely resampled). Comparing performance metrics for configurations averaged with different resamples is likely to lead to inappropriate results.
Value
A tibble. The column names depend on the results and the mode of the model.