fill.simple {filling} | R Documentation |
Imputation by Simple Rules
Description
One of the most simplest ways to fill in the missing entries is
to apply any simple rule for each variable. In this example, we provide
3 options, "mean"
, "median"
, and "random"
. It assumes
that every column has at least one non-missing entries in that for each column,
the rule is applied from the subset of non-missing values.
Usage
fill.simple(A, method = c("mean", "median", "random"))
Arguments
A |
an |
method |
simple rule to fill in the missing entries in a columnwise manner. |
Value
a named list containing
- X
an
(n\times p)
matrix after completion.
References
Gelman A, Hill J (2007). Data analysis using regression and multilevel/hierarchical models, Analytical methods for social research. Cambridge University Press, Cambridge ; New York. ISBN 978-0-521-86706-1 978-0-521-68689-1, OCLC: ocm67375137.
Examples
## load image data of 'lena128'
data(lena128)
## transform 5% of entries into missing
A <- aux.rndmissing(lena128, x=0.05)
## apply all three methods#'
fill1 <- fill.simple(A, method="mean")
fill2 <- fill.simple(A, method="median")
fill3 <- fill.simple(A, method="random")
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(A, col=gray((0:100)/100), axes=FALSE, main="original")
image(fill1$X, col=gray((0:100)/100), axes=FALSE, main="method:mean")
image(fill2$X, col=gray((0:100)/100), axes=FALSE, main="method:median")
image(fill3$X, col=gray((0:100)/100), axes=FALSE, main="method:random")
par(opar)
[Package filling version 0.2.3 Index]