fill.SoftImpute {filling} | R Documentation |
SoftImpute : Spectral Regularization
Description
fill.SoftImpute
implements convex relaxation techniques to generate
a sequence of regularized low-rank solutions for matrix completion problems.
For the nuclear norm optimization problem, it uses soft thresholding technique
iteratively in that the algorithm returns several matrices in accordance with
the provided vector of regularization parameters \lambda
(lambdas
).
Usage
fill.SoftImpute(A, lambdas = c(10, 1, 0.1), maxiter = 100, tol = 0.001)
Arguments
A |
an |
lambdas |
a length- |
maxiter |
maximum number of iterations to be performed. |
tol |
stopping criterion for an incremental progress. |
Value
a named list containing
- X
an
(n\times p\times t)
cubic array after completion at eachlambda
value.
References
Mazumder R, Hastie T, Tibshirani R (2010). “Spectral Regularization Algorithms for Learning Large Incomplete Matrices.” J. Mach. Learn. Res., 11, 2287–2322. ISSN 1532-4435.
See Also
Examples
## load image data of 'lena128'
data(lena128)
## transform 5% of entries into missing
A <- aux.rndmissing(lena128, x=0.05)
## apply the method with 3 lambda values
fill <- fill.SoftImpute(A, lambdas=c(500,100,50))
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2), pty="s")
image(A, col=gray((0:100)/100), axes=FALSE, main="5% missing")
image(fill$X[,,1], col=gray((0:100)/100), axes=FALSE, main="lambda=500")
image(fill$X[,,2], col=gray((0:100)/100), axes=FALSE, main="lambda=100")
image(fill$X[,,3], col=gray((0:100)/100), axes=FALSE, main="lambda=50")
par(opar)