predict.pibblefit {fido} | R Documentation |
Predict response from new data
Description
Predict response from new data
Usage
## S3 method for class 'pibblefit'
predict(
object,
newdata = NULL,
response = "LambdaX",
size = NULL,
use_names = TRUE,
summary = FALSE,
iter = NULL,
from_scratch = FALSE,
...
)
Arguments
object |
An object of class pibblefit |
newdata |
An optional matrix for which to evaluate predictions. If NULL (default), the original data of the model is used. |
response |
Options = "LambdaX":Mean of regression, "Eta", "Y": counts |
size |
the number of counts per sample if response="Y" (as vector or matrix), default if newdata=NULL and response="Y" is to use colsums of m$Y. Otherwise uses median colsums of m$Y as default. If passed as a matrix should have dimensions ncol(newdata) x iter. |
use_names |
if TRUE apply names to output |
summary |
if TRUE, posterior summary of predictions are returned rather than samples |
iter |
number of iterations to return if NULL uses object$iter |
from_scratch |
should predictions of Y come from fitted Eta or from predictions of Eta from posterior of Lambda? (default: false) |
... |
other arguments passed to summarise_posterior |
Details
currently only implemented for pibblefit objects in coord_system "default" "alr", or "ilr".
Value
(if summary==FALSE) array D x N x iter; (if summary==TRUE) tibble with calculated posterior summaries
Examples
sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
predict(fit)[,,1:2] # just show 2 samples