pibblefit {fido} | R Documentation |
Create pibblefit object
Description
Create pibblefit object
Usage
pibblefit(
D,
N,
Q,
coord_system,
iter = NULL,
alr_base = NULL,
ilr_base = NULL,
Eta = NULL,
Lambda = NULL,
Sigma = NULL,
Sigma_default = NULL,
Y = NULL,
X = NULL,
upsilon = NULL,
Theta = NULL,
Xi = NULL,
Xi_default = NULL,
Gamma = NULL,
init = NULL,
names_categories = NULL,
names_samples = NULL,
names_covariates = NULL
)
Arguments
D |
number of multinomial categories |
N |
number of samples |
Q |
number of covariates |
coord_system |
coordinate system objects are represented in (options include "alr", "clr", "ilr", and "proportions") |
iter |
number of posterior samples |
alr_base |
integer category used as reference (required if coord_system=="alr") |
ilr_base |
(D x D-1) contrast matrix (required if coord_system=="ilr") |
Eta |
Array of samples of Eta |
Lambda |
Array of samples of Lambda |
Sigma |
Array of samples of Sigma (null if coord_system=="proportions") |
Sigma_default |
Array of samples of Sigma in alr base D, used if coord_system=="proportions" |
Y |
DxN matrix of observed counts |
X |
QxN design matrix |
upsilon |
scalar prior dof of inverse wishart prior |
Theta |
prior mean of Lambda |
Xi |
Matrix of prior covariance for inverse wishart (null if coord_system=="proportions") |
Xi_default |
Matrix of prior covariance for inverse wishart in alr base D (used if coord_system=="proportions") |
Gamma |
QxQ covariance matrix prior for Lambda |
init |
matrix initial guess for Lambda used for optimization |
names_categories |
character vector |
names_samples |
character vector |
names_covariates |
character vector |
Value
object of class pibblefit