tt_test {fgeo.analyze} | R Documentation |
Torus Translation Test to determine habitat associations of tree species.
Description
Determine habitat-species associations with code developed by Sabrina Russo, Daniel Zuleta, Matteo Detto, and Kyle Harms.
Usage
tt_test(tree, habitat, sp = NULL, plotdim = NULL, gridsize = NULL)
Arguments
tree |
A dataframe; a ForestGEO tree table (see details). |
habitat |
Object giving the habitat designation for each
plot partition defined by |
sp |
Character sting giving any number of species-names. |
plotdim , gridsize |
Plot dimensions and gridsize. If |
Details
This test only makes sense at the population level. We are interested in knowing whether or not individuals of a species are aggregated on a habitat. Multiple stems of an individual do not represent population level processes but individual level processes. Thus, you should use data of individual trees – i.e. use a tree table, and not a stem table with potentially multiple stems per tree.
You should only try to determine the habitat association for sufficiently abundant species. In a 50-ha plot, a minimum abundance of 50 trees/species has been used.
Value
A list of matrices.
Acknowledgments
Nestor Engone Obiang, David Kenfack, Jennifer Baltzer, and Rutuja Chitra-Tarak provided feedback. Daniel Zuleta provided guidance.
Interpretation of Output
-
N.Hab.1
: Count of stems of the focal species in habitat 1. -
Gr.Hab.1
: Count of instances the observed relative density of the focal species on habitat 1 was greater than the relative density based on the TT habitat map. -
Ls.Hab.1
: Count of instances the observed relative density of the focal species on habitat 1 was less than the relative density based on the TT habitat map. -
Eq.Hab.1
: Count of instances the observed relative density of the focal species on habitat 1 was equal to the relative density based on the TT habitat map. The sum of theGr.Hab.x
,Ls.Hab.x
, andEq.Hab.x
columns for one habitat equals the number of 20 x20 quads in the plot. TheRep.Agg.Neut
columns for each habitat indicate whether the species is significantly repelled (-1), aggregated (1), or neutrally distributed (0) on the habitat in question.
The probabilities associated with the test for whether these patterns are
statistically significant are in the Obs.Quantile
columns for each habitat.
Note that to calculate the probability for repelled, it is the value
given, but to calculate the probability for aggregated, it is one minus
the value given.
Values of the Obs.Quantile < 0.025
means that the species is repelled from
that habitat, while values of the Obs.Quantile > 0.975
means that the
species is aggregated on that habitat.
References
Zuleta, D., Russo, S.E., Barona, A. et al. Plant Soil (2018). https://doi.org/10.1007/s11104-018-3878-0.
Author(s)
Sabrina Russo, Daniel Zuleta, Matteo Detto, and Kyle Harms.
See Also
summary.tt_lst()
, summary.tt_df()
, as_tibble()
,
fgeo_habitat()
.
Other habitat functions:
fgeo_habitat()
,
fgeo_topography()
Examples
library(fgeo.tool)
assert_is_installed("fgeo.x")
# Example data
tree <- fgeo.x::tree6_3species
elevation <- fgeo.x::elevation
# Pick alive trees, of 10 mm or more
census <- filter(tree, status == "A", dbh >= 10)
# Pick sufficiently abundant species
pick <- filter(dplyr::add_count(census, sp), n > 50)
# Use your habitat data or create it from elevation data
habitat <- fgeo_habitat(elevation, gridsize = 20, n = 4)
# Defaults to using all species
as_tibble(
tt_test(census, habitat)
)
Reduce(rbind, tt_test(census, habitat))
some_species <- c("CASARB", "PREMON")
result <- tt_test(census, habitat, sp = some_species)
summary(result)