kernel_normal {ffp} | R Documentation |
Full Information by Kernel-Damping
Description
Historical realizations receive a weight proportional to their distance from a target mean.
Usage
kernel_normal(x, mean, sigma)
## Default S3 method:
kernel_normal(x, mean, sigma)
## S3 method for class 'numeric'
kernel_normal(x, mean, sigma)
## S3 method for class 'matrix'
kernel_normal(x, mean, sigma)
## S3 method for class 'ts'
kernel_normal(x, mean, sigma)
## S3 method for class 'xts'
kernel_normal(x, mean, sigma)
## S3 method for class 'tbl_df'
kernel_normal(x, mean, sigma)
## S3 method for class 'data.frame'
kernel_normal(x, mean, sigma)
Arguments
x |
An univariate or a multivariate distribution. |
mean |
A numeric vector in which the kernel should be centered. |
sigma |
The uncertainty (volatility) around the mean. |
Value
A numerical vector of class ffp
with the new
probabilities distribution.
See Also
Examples
library(ggplot2)
ret <- diff(log(EuStockMarkets[ , 1]))
mean <- -0.01 # scenarios around -1%
sigma <- var(diff(ret))
kn <- kernel_normal(ret, mean, sigma)
kn
autoplot(kn) +
scale_color_viridis_c()
# A larger sigma spreads out the distribution
sigma <- var(diff(ret)) / 0.05
kn <- kernel_normal(ret, mean, sigma)
autoplot(kn) +
scale_color_viridis_c()
[Package ffp version 0.2.2 Index]