exp_decay {ffp} | R Documentation |
Full Information by Exponential Decay
Description
Exponential smoothing twists probabilities by giving relatively more weight to recent observations at an exponential rate.
Usage
exp_decay(x, lambda)
## Default S3 method:
exp_decay(x, lambda)
## S3 method for class 'numeric'
exp_decay(x, lambda)
## S3 method for class 'matrix'
exp_decay(x, lambda)
## S3 method for class 'ts'
exp_decay(x, lambda)
## S3 method for class 'xts'
exp_decay(x, lambda)
## S3 method for class 'data.frame'
exp_decay(x, lambda)
## S3 method for class 'tbl'
exp_decay(x, lambda)
Arguments
x |
An univariate or a multivariate distribution. |
lambda |
A |
Details
The half-life is linked with the lambda parameter as follows:
-
HL = log(2) / lambda
.
For example: log(2) / 0.0166 is approximately 42. So, a parameter lambda
of 0.0166
can be associated with a half-life of two-months (21 * 2).
Value
A numerical vector of class ffp
with the new
probabilities distribution.
See Also
Examples
library(ggplot2)
# long half_life
long_hl <- exp_decay(EuStockMarkets, 0.001)
long_hl
autoplot(long_hl) +
scale_color_viridis_c()
# short half_life
short_hl <- exp_decay(EuStockMarkets, 0.015)
short_hl
autoplot(short_hl) +
scale_color_viridis_c()
[Package ffp version 0.2.2 Index]