predict.feis {feisr} | R Documentation |
Predict method for feis models
Description
Predicted values based on linear model object.
Usage
## S3 method for class 'feis'
predict(
object,
newdata = NULL,
se.fit = FALSE,
vcov = NULL,
interval = c("none", "confidence", "prediction"),
level = 0.95,
pred.var = sigma_sq,
...
)
Arguments
object |
an object of class " |
newdata |
an optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used. |
se.fit |
a switch indicating if standard errors are required. |
vcov |
optional variance-covariance matrix for std.err. calculation. |
interval |
type of interval calculation. |
level |
tolerance/confidence level. |
pred.var |
the variance for future observations to be assumed for prediction intervals. By default, equals the residual variance |
... |
further arguments. |
Details
predict.lm
produces predicted values, obtained by evaluating the regression function
in the frame newdata (which defaults to model.matrix(object)
). If the logical se.fit
is
TRUE
, standard errors of the predictions are calculated. If the vcov
is not provided,
the object$vcov
is used, thus allowing for robust variance-covariance matrices.
Setting intervals specifies computation of confidence or prediction (tolerance) intervals
at the specified level
.
Note: Currently, predictions are based on the transformed (de-trended) data.
Value
A vector of predictions or a matrix of predictions and bounds with column names
fit
, lwr
, and upr
if interval
is set.
See Also
Examples
feis.mod <- feis(lnw ~ age | exp,
data = mwp, id = "id", robust = TRUE)
new <- data.frame(age = seq(-10, 10, 1))
feis.pred <- predict(feis.mod, newdata = new,
se.fit = TRUE, interval = "confidence")
## Not run:
matplot(new$age, feis.pred$fit, lty = c(1,2,2),
type = "l", ylab = "predicted y")
## End(Not run)