plot.fdt {fdth} | R Documentation |
Plot fdt.default and fdt.multiple objects
Description
S3 methods for fdt.default
and fdt.multiple
objects.
It is possible to plot histograms and polygons (absolute, relative
and cumulative).
Usage
## S3 methods
## S3 method for class 'fdt.default'
plot(x,
type=c('fh', 'fp',
'rfh', 'rfp',
'rfph', 'rfpp',
'd',
'cdh', 'cdp',
'cfh', 'cfp',
'cfph', 'cfpp'),
v=FALSE,
v.round=2,
v.pos=3,
xlab="Class limits",
xlas=0,
ylab=NULL,
col="gray",
xlim=NULL,
ylim=NULL,
main=NULL,
x.round=2, ...)
## S3 method for class 'fdt.multiple'
plot(x,
type=c('fh', 'fp',
'rfh', 'rfp',
'rfph', 'rfpp',
'd',
'cdh', 'cdp',
'cfh', 'cfp',
'cfph', 'cfpp'),
v=FALSE,
v.round=2,
v.pos=3,
xlab="Class limits",
xlas=0,
ylab=NULL,
col="gray",
xlim=NULL,
ylim=NULL,
main=NULL,
main.vars=TRUE,
x.round=2,
grouped=FALSE,
args.legend=NULL, ...)
## S3 method for class 'fdt_cat.default'
plot(x,
type=c('fb', 'fp', 'fd',
'rfb', 'rfp', 'rfd',
'rfpb', 'rfpp', 'rfpd',
'cfb', 'cfp', 'cfd',
'cfpb', 'cfpp', 'cfpd',
'pa'),
v=FALSE,
v.round=2,
v.pos=3,
xlab=NULL,
xlas=0,
ylab=NULL,
y2lab=NULL,
y2cfp=seq(0, 100, 25),
col=gray(.4),
xlim=NULL,
ylim=NULL,
main=NULL,
box=FALSE, ...)
## S3 method for class 'fdt_cat.multiple'
plot(x,
type=c('fb', 'fp', 'fd',
'rfb', 'rfp', 'rfd',
'rfpb', 'rfpp', 'rfpd',
'cfb', 'cfp', 'cfd',
'cfpb', 'cfpp', 'cfpd',
'pa'),
v=FALSE,
v.round=2,
v.pos=3,
xlab=NULL,
xlas=0,
ylab=NULL,
y2lab=NULL,
y2cfp=seq(0, 100, 25),
col=gray(.4),
xlim=NULL,
ylim=NULL,
main=NULL,
main.vars=TRUE,
box=FALSE, ...)
Arguments
x |
A ‘fdt’ object. |
type |
the type of the plot: ‘rfb:’ relative frequency barplot, ‘rfpb:’ relative frequency (%) barplot, ‘d:’ density, ‘cfb:’ cumulative frequency barplot, ‘cdpb:’ cumulative frequency (%) barplot, ‘pa:’ pareto chart. |
v |
logical flag: should the values be added to the plot? |
v.round |
if |
v.pos |
if |
xlab |
a label for the ‘x’ axis. |
xlas |
an integer which controls the orientation of the ‘x’ axis labels: |
ylab |
a label for the ‘y’ axis. |
y2lab |
a label for the ‘y2’ axis. |
y2cfp |
a cumulative percent frequency for the ‘y2’ axis. The default is |
col |
a |
xlim |
the ‘x’ limits of the plot. |
ylim |
the ‘y’ limits of the plot. |
main |
title of the plot(s). This option has priority over ‘main.vars’, i.e, if any value is informed,
the variable names will not be used as title of the plot(s). For |
main.vars |
logical flag: should the variables names be added as title of each plot (default |
x.round |
a numeric value to round the ‘x’ ticks:
‘0:’ parallel to the axes, |
box |
if |
grouped |
if |
args.legend |
list of additional arguments to be passed to |
... |
optional plotting parameters. |
Details
The result is a single histogram or polygon (absolute, relative or cumulative)
for fdt.default
or a set of histograms or polygon (absolute, relative or
cumulative) for fdt.multiple
objects.
Both ‘default and multiple’ try to compute the maximum number of histograms
that will fit on one page, then it draws a matrix of histograms. More than one
graphical device may be opened to show all histograms.
The result is a single barplot, polygon, dotchar (absolute, relative or cumulative)
and Pareto chart for fdt_cat.default
or a set of the same graphs for
fdt_cat.multiple
objects.
Both ‘default and multiple’ try to compute the maximum number of histograms
that will fit on one page, then it draws a matrix of graphs lited above. More than one
graphical device may be opened to show all graphs.
Author(s)
Faria, J. C.
Allaman, I. B
Jelihovschi, E. G.
Examples
library(fdth)
#================================
# Vectors: univariated numerical
#================================
x <- rnorm(n=1e3,
mean=5,
sd=1)
(ft <- fdt(x))
# Histograms
plot(ft) # Absolute frequency histogram
plot(ft,
main='My title')
plot(ft,
x.round=3,
col='darkgreen')
plot(ft,
xlas=2)
plot(ft,
x.round=3,
xlas=2,
xlab=NULL)
plot(ft,
v=TRUE,
cex=.8,
x.round=3,
xlas=2,
xlab=NULL,
col=rainbow(11))
plot(ft,
type='fh') # Absolute frequency histogram
plot(ft,
type='rfh') # Relative frequency histogram
plot(ft,
type='rfph') # Relative frequency (%) histogram
plot(ft,
type='cdh') # Cumulative density histogram
plot(ft,
type='cfh') # Cumulative frequency histogram
plot(ft,
type='cfph') # Cumulative frequency (%) histogram
# Poligons
plot(ft,
type='fp') # Absolute frequency polygon
plot(ft,
type='rfp') # Relative frequency polygon
plot(ft,
type='rfpp') # Relative frequency (%) polygon
plot(ft,
type='cdp') # Cumulative density polygon
plot(ft,
type='cfp') # Cumulative frequency polygon
plot(ft,
type='cfpp') # Cumulative frequency (%) polygon
# Density
plot(ft,
type='d') # Density
# Theoretical curve and fdt
x <- rnorm(1e5,
mean=5,
sd=1)
plot(fdt(x,
k=100),
type='d',
col=heat.colors(100))
curve(dnorm(x,
mean=5,
sd=1),
col='darkgreen',
add=TRUE,
lwd=2)
#==================================
# Vectors: univariated categorical
#==================================
x <- sample(letters[1:5],
1e3,
rep=TRUE)
(ft.c <- fdt_cat(x))
# Barplot: the default
plot(ft.c)
# Barplot
plot(ft.c,
type='fb')
# Polygon
plot(ft.c,
type='fp')
# Dotchart
plot(ft.c,
type='fd')
# Pareto chart
plot(ft.c,
type='pa')
#=============================================
# Data.frames: multivariated with categorical
#=============================================
mdf <- data.frame(X1=rep(LETTERS[1:4], 25),
X2=as.factor(rep(1:10, 10)),
Y1=c(NA, NA, rnorm(96, 10, 1), NA, NA),
Y2=rnorm(100, 60, 4),
Y3=rnorm(100, 50, 4),
Y4=rnorm(100, 40, 4),
stringsAsFactors=TRUE)
# Histograms
(ft <- fdt(mdf,
na.rm=TRUE))
plot(ft,
v=TRUE,
cex=.8)
plot(ft,
col='darkgreen',
ylim=c(0, 40))
plot(ft,
col=rainbow(8),
ylim=c(0, 40),
main=LETTERS[1:4])
plot(ft,
type='fh')
plot(ft,
type='rfh')
plot(ft,
type='rfph')
plot(ft,
type='cdh')
plot(ft,
type='cfh')
plot(ft,
type='cfph')
# Poligons
plot(ft,
v=TRUE,
type='fp')
plot(ft,
type='rfp')
plot(ft,
type='rfpp')
plot(ft,
type='cdp')
plot(ft,
type='cfp')
plot(ft,
type='cfpp')
# Density
plot(ft,
type='d')
levels(mdf$X1)
plot(fdt(mdf,
k=5,
by='X1',
na.rm=TRUE),
ylim=c(0, 12))
levels(mdf$X2)
plot(fdt(mdf,
breaks='FD',
by='X2',
na.rm=TRUE))
plot(fdt(mdf,
k=5,
by='X2',
na.rm=TRUE)) # It is difficult to compare
plot(fdt(mdf,
k=5,
by='X2',
na.rm=TRUE),
ylim=c(0, 8)) # Easy
plot(fdt(iris,
k=5))
plot(fdt(iris,
k=5),
col=rainbow(5))
plot(fdt(iris,
k=5,
by='Species'),
v=TRUE)
ft <- fdt(iris,
k=10)
plot(ft)
plot(ft,
type='d')
# Categorical data
(ft.c <- fdt_cat(mdf))
plot(ft.c)
plot(ft.c,
type='fd',
pch=19)
#=========================
# Matrices: multivariated
#=========================
plot(fdt(state.x77))
plot(fdt(volcano))