fdt_cat {fdth} | R Documentation |
Frequency distribution table for categorical data
Description
A S3 set of methods to easily perform categorical frequency distribution table (‘fdt_cat’) from
vector
, data.frame
and matrix
objects.
Usage
## S3 generic
fdt_cat(x, ...)
## S3 methods
## Default S3 method:
fdt_cat(x,
sort=TRUE,
decreasing=TRUE, ...)
## S3 method for class 'data.frame'
fdt_cat(x,
by,
sort=TRUE,
decreasing=TRUE, ...)
## S3 method for class 'matrix'
fdt_cat(x,
sort=TRUE,
decreasing=TRUE, ...)
Arguments
x |
a |
by |
categorical variable used for grouping each categorical response,
useful only on |
sort |
logical. Should the |
decreasing |
logical. Should the sort order be increasing or decreasing?
(default = |
... |
optional further arguments (required by generic). |
Details
The simplest way to run ‘fdt_cat’ is supplying only the ‘x’
object, for example: ct <- fdt_cat(x)
. In this case all necessary
default values (‘sort = TRUE’ and ‘decreasing = TRUE’) will be used.
These options make the ‘fdt_cat’ very easy and flexible.
The ‘fdt_cat’ object stores information to be used by methods summary
,
print
, plot
and mfv
. The result of plot is a bar plot.
The methods summary.fdt_cat
, print.fdt_cat
and plot.fdt_cat
provide a reasonable
set of parameters to format and plot the ‘fdt_cat’ object in a pretty
(and publishable) way.
Value
For fdt_cat
the method fdt_cat.default
returns a data.frame
storing the ‘fdt’.
The methods fdt_cat.data.frame
and fdt_cat.matrix
return a list of class fdt_cat..multiple
.
This list
has one slot for each categorical
variable of the supplied ‘x’. Each slot, corresponding to each categorical
variable, stores the same slots of the fdt_cat.default
described above.
Author(s)
Faria, J. C.
Allaman, I. B
Jelihovschi, E. G.
See Also
hist
provided by graphics and
table
, cut
both provided by base.
Examples
library(fdth)
# Categorical
x <- sample(x=letters[1:5],
size=5e2,
rep=TRUE)
table(x)
(ft.c <- fdt_cat(x))
(ft.c <- fdt_cat(x,
sort=FALSE))
#================================================
# Data.frame: multivariated with two categorical
#================================================
mdf <- data.frame(c1=sample(LETTERS[1:3], 1e2, rep=TRUE),
c2=as.factor(sample(1:10, 1e2, rep=TRUE)),
n1=c(NA, NA, rnorm(96, 10, 1), NA, NA),
n2=rnorm(100, 60, 4),
n3=rnorm(100, 50, 4),
stringsAsFactors=TRUE)
head(mdf)
(ft.c <- fdt_cat(mdf))
(ft.c <- fdt_cat(mdf,
dec=FALSE))
(ft.c <- fdt_cat(mdf,
sort=FALSE))
(ft.c <- fdt_cat(mdf,
by='c1'))
#================================================
# Matrix: two categorical
#================================================
x <- matrix(sample(x=letters[1:10],
size=100,
rep=TRUE),
nc=2,
dimnames=list(NULL,
c('c1', 'c2')))
head(x)
(ft.c <- fdt_cat(x))