Biscuit {fds}R Documentation

Biscuit dough piece data

Description

The experiment involved varying the composition of biscuit dough pieces. Two sets of dough pieces were measured, a calibration set and a prediction set. They were created and measured as two distinct sets, on separate occasions, and do not result from a random (or any other) split of a larger set.

Usage

data(labp)
data(labc)
data(nirp)
data(nirc)

Format

nirp and nirc are objects of class fds.

labp and labc are objects of class matrix.

Details

The data labc (c stands for calibration) and labp (p stands for prediction) contain the reference data on the composition of the doughs.

The data nirc and nirp contain 700 point near infrared reflectance (NIR) spectra for the same dough. The spectral range is 1100-2498 nm in steps of 2nm.

The data labc$y is 4 rows by 40 columns, the rows being fat, sucrose, flour and water all in percents. The percents do not quite add up to 100, since there are other minor ingredients present, but they add up to nearly 100 percent.

According to Brown et al. (2001), the observation 23 in the calibration set appears as an outlier.

Sample number 21 in the labp shows up as a validation set.

Note

We thank Professor Marina Vannucci for the permission to re-distribute this data set.

References

P. J. Brown and T. Fearn and M. Vannucci (2001) "Bayesian wavelet regression on curves with applications to a spectroscopic calibration problem", Journal of the American Statistical Association, 96(454), pp. 398-408.

Examples

plot(nirp)
plot(nirc)

[Package fds version 1.8 Index]