APRIORI {fdm2id} | R Documentation |
Classification using APRIORI
Description
This function builds a classification model using the association rules method APRIORI.
Usage
APRIORI(
train,
labels,
supp = 0.05,
conf = 0.8,
prune = FALSE,
tune = FALSE,
...
)
Arguments
train |
The training set (description), as a |
labels |
Class labels of the training set ( |
supp |
The minimal support of an item set (numeric value). |
conf |
The minimal confidence of an item set (numeric value). |
prune |
A logical indicating whether to prune redundant rules or not (default: |
tune |
If true, the function returns paramters instead of a classification model. |
... |
Other parameters. |
Value
The classification model, as an object of class apriori
.
See Also
predict.apriori
, apriori-class
, apriori
Examples
require ("datasets")
data (iris)
d = discretizeDF (iris,
default = list (method = "interval", breaks = 3, labels = c ("small", "medium", "large")))
APRIORI (d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)
[Package fdm2id version 0.9.9 Index]