ADABOOST {fdm2id} | R Documentation |
Classification using AdaBoost
Description
Ensemble learning, through AdaBoost Algorithm.
Usage
ADABOOST(
x,
y,
learningmethod,
nsamples = 100,
fuzzy = FALSE,
tune = FALSE,
seed = NULL,
...
)
Arguments
x |
The dataset (description/predictors), a |
y |
The target (class labels or numeric values), a |
learningmethod |
The boosted method. |
nsamples |
The number of samplings. |
fuzzy |
Indicates whether or not fuzzy classification should be used or not. |
tune |
If true, the function returns paramters instead of a classification model. |
seed |
A specified seed for random number generation. |
... |
Other specific parameters for the leaning method. |
Value
The classification model.
See Also
Examples
## Not run:
require (datasets)
data (iris)
ADABOOST (iris [, -5], iris [, 5], NB)
## End(Not run)
[Package fdm2id version 0.9.9 Index]