fitted.FPCA {fdapace} | R Documentation |
Fitted functional data from FPCA object
Description
Combines the zero-meaned fitted values and the interpolated mean to get the fitted values for the trajectories
or the derivatives of these trajectories.
Estimates are given on the work-grid, not on the observation grid. Use ConvertSupport
to map the estimates to your desired domain. 100*(1-alpha)
-percentage coverage intervals, or
bands, for trajectory estimates (not derivatives) are provided. For details consult the example.
Usage
## S3 method for class 'FPCA'
fitted(
object,
K = NULL,
derOptns = list(p = 0),
ciOptns = list(alpha = NULL, cvgMethod = NULL),
...
)
Arguments
object |
A object of class FPCA returned by the function FPCA(). |
K |
The integer number of the first K components used for the representation. (default: length(fpcaObj$lambda )) |
derOptns |
A list of options to control the derivation parameters specified by |
ciOptns |
A list of options to control the confidence interval/band specified by |
... |
Additional arguments |
Details
Available derivation control options are
- p
The order of the derivatives returned (default: 0, max: 2)
- method
The method used to produce the sample of derivatives ('FPC' (default) or 'QUO'). See Liu and Müller (2009) for more details
- bw
Bandwidth for smoothing the derivatives (default: p * 0.10 * S)
- kernelType
Smoothing kernel choice; same available types are FPCA(). default('epan')
Available confidence interval/band control options are
- alpha
Significant level for confidence interval/band for trajectory coverage. default=0.05 (currently only work when p=0)
- cvgMethod
Option for trajectory coverage method between 'interval' (pointwise coverage) and 'band' (simultaneous coverage). default='band'
Value
If alpha
is NULL
, p>1
or functional observations are dense, an n
by length(workGrid)
matrix, each row of which contains a sample. Otherwise, it returns a list which consists of the following items:
workGrid |
An evaluation grid for fitted values. |
fitted |
An n by length(workGrid) matrix, each row of which contains a sample. |
cvgUpper |
An n by length(workGrid) matrix, each row of which contains the upper |
cvgLower |
An n by length(workGrid) matrix, each row of which contains the lower |
References
Yao, F., Müller, H.-G. and Wang, J.-L. "Functional data analysis for sparse longitudinal data", Journal of the American Statistical Association, vol.100, No. 470 (2005): 577-590.
Liu, Bitao, and Hans-Georg Müller. "Estimating derivatives for samples of sparsely observed functions, with application to online auction dynamics." Journal of the American Statistical Association 104, no. 486 (2009): 704-717. (Sparse data FPCA)
Examples
set.seed(1)
n <- 100
pts <- seq(0, 1, by=0.05)
sampWiener <- Wiener(n, pts)
sampWiener <- Sparsify(sampWiener, pts, 5:10)
res <- FPCA(sampWiener$Ly, sampWiener$Lt,
list(dataType='Sparse', error=FALSE, kernel='epan', verbose=TRUE))
fittedY <- fitted(res, ciOptns = list(alpha=0.05))
workGrid <- res$workGrid
cvgUpper <- fittedY$cvgUpper
cvgLower <- fittedY$cvgLower
op <- par(mfrow=c(2,3))
ind <- sample(1:n,6)
for (i in 1:6) {
j <- ind[i]
plot(workGrid,cvgUpper[j,],type='l',ylim=c(min(cvgLower[j,]),max(cvgUpper[j,])),col=4,lty=2,
xlab='t', ylab='X(t)', main=paste(j,'-th subject',sep=''))
points(workGrid,cvgLower[j,],type='l',col=4,lty=2)
points(res$inputData$Lt[[j]],res$inputData$Ly[[j]])
}
par(op)