GetNormalisedSample {fdapace} | R Documentation |
Normalise sparse multivariate functional data
Description
Normalise sparse functional sample given in an FPCA object
Usage
GetNormalisedSample(fpcaObj, errorSigma = FALSE)
GetNormalizedSample(...)
Arguments
fpcaObj |
An FPCA object. |
errorSigma |
Indicator to use sigma^2 error variance when normalising the data (default: FALSE) |
... |
Passed into GetNormalisedSample |
Value
A list containing the normalised sample 'y' at times 't'
References
Chiou, Jeng-Min and Chen, Yu-Ting and Yang, Ya-Fang. "Multivariate Functional Principal Component Analysis: A Normalization Approach" Statistica Sinica 24 (2014): 1571-1596
Examples
set.seed(1)
n <- 100
M <- 51
pts <- seq(0, 1, length.out=M)
mu <- rep(0, length(pts))
sampDense <- MakeGPFunctionalData(n, M, mu, K=1, basisType='sin', sigma=0.01)
samp4 <- MakeFPCAInputs(tVec=sampDense$pts, yVec=sampDense$Yn)
res4E <- FPCA(samp4$Ly, samp4$Lt, list(error=TRUE))
sampN <- GetNormalisedSample(res4E, errorSigma=TRUE)
CreatePathPlot(subset=1:20, inputData=samp4, obsOnly=TRUE, showObs=FALSE)
CreatePathPlot(subset=1:20, inputData=sampN, obsOnly=TRUE, showObs=FALSE)
[Package fdapace version 0.6.0 Index]