CreateModeOfVarPlotLQ2D {fdadensity} | R Documentation |
Transformation Mode of Variation Plot
Description
Create the k-th transformation mode of variation plot.
Usage
CreateModeOfVarPlotLQ2D(
fpcaObj,
domain = "D",
k = 1,
dSup = NULL,
Qvec = -2:2,
alpha = 0,
useAlpha = FALSE,
...
)
Arguments
fpcaObj |
An FPCA class object returned by FPCA() on the log quantile density functions. |
domain |
should the mode be plotted in LQD ('Q') or density space ('D', the default). |
k |
The k-th mode of variation to plot (default k = 1) |
dSup |
The common support of the original densities. Only relevant for |
Qvec |
Vector of values |
alpha |
(De)regularisation parameter (default is 0). See details. |
useAlpha |
logical - should deregularisation be performed? Default:FALSE |
... |
Additional arguments for the 'plot' function. |
Details
If domain = 'D'
(the default), the a transformation mode of variation is plotted. The red-line is
\psi^{-1}(\nu)
, where \nu
is the mean in LQD space and
\psi
is the LQD transformation. Other lines correspond to perturbations by
adding multiples of the LQD eigenfunctions \rho_k
(with eigenvalues \tau_k
)
: \psi^{-1}(\nu + Q \sqrt{\tau_k} \rho_k)
for the values Q
in Qvec
. If alpha
is positive, will attempt to deregularise (see DeregulariseByAlpha
). This
will throw an error if alpha is too large.
If domain = 'Q'
, ordinary modes of variation are plotted in LQD space (see documentation for CreateModeOfVarPlot
in fdapace
).
References
Functional Data Analysis for Density Functions by Transformation to a Hilbert space, Alexander Petersen and Hans-Georg Mueller, 2016
See Also
Examples
## Densities for Top 50 Male Baby Names
data(Top50BabyNames)
x = Top50BabyNames$x
# Perform Transformation FPCA for male baby name densities
X = FPCAdens(dmatrix = t(Top50BabyNames$dens$male), dSup = Top50BabyNames$x, useAlpha = TRUE,
optns = list(dataType = 'Dense', error = FALSE, methodSelectK = 2))
# Plot Modes
Qvec = quantile(X$xiEst[,1], probs = c(0.1, 0.25, 0.75, 0.9))/sqrt(X$lambda[1])
CreateModeOfVarPlotLQ2D(X, k = 1, dSup = x, Qvec = Qvec, main = 'First Mode, Density Space')
CreateModeOfVarPlotLQ2D(X, domain = 'Q', k = 1, dSup = x, Qvec = Qvec,
main = 'First Mode, LQD space')
Qvec = quantile(X$xiEst[,2], probs = c(0.1, 0.25, 0.75, 0.9))/sqrt(X$lambda[2])
CreateModeOfVarPlotLQ2D(X, k = 2, dSup = x, Qvec = Qvec, main = 'Second Mode, Density Space')
CreateModeOfVarPlotLQ2D(X, domain = 'Q', k = 2, dSup = x, Qvec = Qvec,
main = 'Second Mode, LQD space')