obtain_autocovariance {fdaACF} | R Documentation |
Estimate the autocovariance function of the series
Description
Obtain the empirical autocovariance function for
lags = 0,...,
nlags
of the functional time
series. Given Y_{1},...,Y_{T}
a functional time
series, the sample autocovariance functions
\hat{C}_{h}(u,v)
are given by:
\hat{C}_{h}(u,v) = \frac{1}{T} \sum_{i=1}^{T-h}(Y_{i}(u) - \overline{Y}_{T}(u))(Y_{i+h}(v) - \overline{Y}_{T}(v))
where
\overline{Y}_{T}(u) = \frac{1}{T} \sum_{i = 1}^{T} Y_{i}(t)
denotes the sample mean function.
Usage
obtain_autocovariance(Y, nlags)
Arguments
Y |
Matrix containing the discretized values
of the functional time series. The dimension of the
matrix is |
nlags |
Number of lagged covariance operators of the functional time series that will be used to estimate the autocorrelation function. |
Value
Return a list with the lagged autocovariance
functions estimated from the data. Each function is given
by a (m x m)
matrix, where m
is the
number of points observed in each curve.
Examples
# Example 1
N <- 100
v <- seq(from = 0, to = 1, length.out = 10)
sig <- 2
bbridge <- simulate_iid_brownian_bridge(N, v, sig)
nlags <- 1
lagged_autocov <- obtain_autocovariance(Y = bbridge,
nlags = nlags)
image(x = v, y = v, z = lagged_autocov$Lag0)
# Example 2
N <- 500
v <- seq(from = 0, to = 1, length.out = 50)
sig <- 2
bbridge <- simulate_iid_brownian_bridge(N, v, sig)
nlags <- 10
lagged_autocov <- obtain_autocovariance(Y = bbridge,
nlags = nlags)
image(x = v, y = v, z = lagged_autocov$Lag0)
image(x = v, y = v, z = lagged_autocov$Lag10)
# Example 3
require(fields)
N <- 500
v <- seq(from = 0, to = 1, length.out = 50)
sig <- 2
bbridge <- simulate_iid_brownian_bridge(N, v, sig)
nlags <- 4
lagged_autocov <- obtain_autocovariance(Y = bbridge,
nlags = nlags)
z_lims <- range(lagged_autocov$Lag0)
colors <- heat.colors(12)
opar <- par(no.readonly = TRUE)
par(mfrow = c(1,5))
par(oma=c( 0,0,0,6))
for(k in 0:nlags){
image(x=v,
y=v,
z = lagged_autocov[[paste0("Lag",k)]],
main = paste("Lag",k),
col = colors,
xlab = "u",
ylab = "v")
}
par(oma=c( 0,0,0,2.5)) # reset margin to be much smaller.
image.plot( legend.only=TRUE, legend.width = 2,zlim=z_lims, col = colors)
par(opar)