obtain_autocovariance {fdaACF} | R Documentation |
Estimate the autocovariance function of the series
Description
Obtain the empirical autocovariance function for
lags nlags
of the functional time
series. Given a functional time
series, the sample autocovariance functions
are given by:
where
denotes the sample mean function.
Usage
obtain_autocovariance(Y, nlags)
Arguments
Y |
Matrix containing the discretized values
of the functional time series. The dimension of the
matrix is |
nlags |
Number of lagged covariance operators of the functional time series that will be used to estimate the autocorrelation function. |
Value
Return a list with the lagged autocovariance
functions estimated from the data. Each function is given
by a matrix, where
is the
number of points observed in each curve.
Examples
# Example 1
N <- 100
v <- seq(from = 0, to = 1, length.out = 10)
sig <- 2
bbridge <- simulate_iid_brownian_bridge(N, v, sig)
nlags <- 1
lagged_autocov <- obtain_autocovariance(Y = bbridge,
nlags = nlags)
image(x = v, y = v, z = lagged_autocov$Lag0)
# Example 2
N <- 500
v <- seq(from = 0, to = 1, length.out = 50)
sig <- 2
bbridge <- simulate_iid_brownian_bridge(N, v, sig)
nlags <- 10
lagged_autocov <- obtain_autocovariance(Y = bbridge,
nlags = nlags)
image(x = v, y = v, z = lagged_autocov$Lag0)
image(x = v, y = v, z = lagged_autocov$Lag10)
# Example 3
require(fields)
N <- 500
v <- seq(from = 0, to = 1, length.out = 50)
sig <- 2
bbridge <- simulate_iid_brownian_bridge(N, v, sig)
nlags <- 4
lagged_autocov <- obtain_autocovariance(Y = bbridge,
nlags = nlags)
z_lims <- range(lagged_autocov$Lag0)
colors <- heat.colors(12)
opar <- par(no.readonly = TRUE)
par(mfrow = c(1,5))
par(oma=c( 0,0,0,6))
for(k in 0:nlags){
image(x=v,
y=v,
z = lagged_autocov[[paste0("Lag",k)]],
main = paste("Lag",k),
col = colors,
xlab = "u",
ylab = "v")
}
par(oma=c( 0,0,0,2.5)) # reset margin to be much smaller.
image.plot( legend.only=TRUE, legend.width = 2,zlim=z_lims, col = colors)
par(opar)
[Package fdaACF version 1.0.0 Index]