fcr {fcr} | R Documentation |
Fit Functional Concurrent Regression
Description
This function implements functional concurrent regression for sparse functional responses with both functional and scalar covariates.
This function is a wrapper for mgcv's gam
/bam
.
Usage
fcr(formula, argvals, subj, argvals.new = NULL, data = NULL, niter = 1,
sp = FALSE, nPhi = NULL, use_bam = FALSE, discrete = FALSE,
face.args = list(knots = 12, lower = -3, pve = 0.95), ...)
Arguments
formula |
formula will accept any input formula which is valid for |
argvals |
a string indicating the functional domain variable name in data |
subj |
a string indicating the unique subject identifier name in data |
argvals.new |
new values of the functional domanin to predict using |
data |
dataframe including all variables of interest. Must not have any missing data for variables used in model fitting. data must also not contain any variables named: "g", "phi" followed by any numbers, or "sp" followed by any numbers. These names are reserved for the fitting procedure. |
niter |
number of times to iterate the covariance estimation |
sp |
logical arguement indicating whether smoothing parameters for random effects should be supplied to
|
nPhi |
number of random effects to include in final model (i.e. number of eigenfunctions of the covariance function). Default value (NULL) results in the use of all estimated random effects. |
use_bam |
logical argument indicating whether to use |
discrete |
logical argument indicating whether whether to supple discrete = TRUE argument to |
face.args |
list of arguments to pass to |
... |
arguments to be passed to mgcv::gam()/bam() |
Details
The models fit are of the form
y = f_0(t_{ij}) + f_1(t_{ij})X_{ij} + ... + b_i(t_{ij}) + \epsilon_{ij}
Note that this function will accept any valid formula for gam
/bam
.
However, only the identity link function is available at this time.
See the package vignettes for additional descriptions of dynamic prediction and the class of models fit by this function.
Value
An object of class fcr
containing five elements
- fit
An object corresponding to the fitted model from the mgcv package
- face.object
An object corresponding to the estimated covariance features
- runtime
Model fitting time
- argvals
Character scalar corresponding the name of the functional domain variable
- runtime
logical scalar corresponding to sp argument used in model fitting
References
Jaganath D, Saito M Giman RH Queirox DM, Rocha GA, Cama V, Cabrera L, Kelleher D, Windle HJ, Crabtree JE, Jean E, Checkley W. First Detected Helicobacter pylori Infection in Infancy Modifies the Association Between Diarrheal Disease and Childhood Growth in Peru. Helicobacter (2014); 19:272-297.
Leroux A, Xiao L, Crainiceanu C, Checkley W (2017). Dynamic prediction in functional concurrent regression with an application to child growth.
Xiao L, Li C, Checkley W, Crainiceanu C. Fast covariance estimation for sparse functional data. Statistics and Computing, (2017).
Examples
data <- content
## smoothing parameters
k <- 12 # number of interior knots for fpca (results in k + 3 basis functions)
K <- 15 # dimenson of smooth for time varying coefficients
## functional domain where we need predictions
tnew <- sort(unique(data$argvals))
###########################################
## Step 1: Smooth time-varying covariate ##
###########################################
dat.waz <- data.frame("y" = data$waz, "subj" = data$subj, argvals = data$argvals)
fit.waz <- face.sparse(dat.waz, newdata = dat.waz, knots = k, argvals.new = tnew)
data$wazPred <- fit.waz$y.pred
#####################
## Step 2: Fit fcr ##
#####################
fit <- fcr(formula = Y ~ s(argvals, k=K, bs="ps") +
s(argvals, by=Male, k=K, bs="ps") +
s(argvals, by=wazPred, bs="ps"),
argvals = "argvals", subj="subj", data=data, use_bam=TRUE, argvals.new=tnew,
face.args = list(knots=k, pve=0.99))
## plot covariance features
plot(fit, plot.covariance=TRUE)
## plot coefficient functions and qq plots for random effects
plot(fit)
########################
## Step 3: Prediction ##
########################
## data frames for in-sample and dynamic predictions
data_dyn <- data_in <- data
## change subject IDs to values not used in model fitting
## for dynamic prediction
data_dyn$subj <- data_dyn$subj + 1000
## make all observations beyond 0.5 NA in both data frames
## and dynamically predict the concurrent covariate in
## dynamic prediction
inx_na <- which(data_dyn$argvals > 0.5)
data_dyn$Y[inx_na] <- data_dyn$waz[inx_na] <- NA
data_dyn$wazPred <- predict(fit.waz,
newdata= data.frame("subj" = data_dyn$subj,
"argvals" = data_dyn$argvals,
"y" = data_dyn$Y))$y.pred
data_in$Y[inx_na] <- NA
## in sample and dynamic predictions on the same subjects
insample_preds <- predict(fit, newdata = data)
dynamic_preds <- predict(fit, newdata = data_dyn)