XB {fclust} | R Documentation |
Xie and Beni index
Description
Produces the Xie and Beni index. The optimal number of clusters k is is such that the index takes the minimum value.
Usage
XB (Xca, U, H, m)
Arguments
Xca |
Matrix or data.frame |
U |
Membership degree matrix |
H |
Prototype matrix |
m |
Parameter of fuzziness (default: 2) |
Details
Xca
should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then XB
should be computed using the same standardized data.
m
should be the same parameter of fuzziness used in the clustering algorithm.
Value
xb |
Value of the Xie and Beni index |
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References
Xie X.L., Beni G. (1991). A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 841-847.
See Also
PC
, PE
, MPC
, SIL
, SIL.F
, Fclust
, Mc
Examples
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## Xie and Beni index
xb=XB(clust$Xca,clust$U,clust$H,clust$m)