SIL {fclust} | R Documentation |
Silhouette index
Description
Produces the silhouette index. The optimal number of clusters k is is such that the index takes the maximum value.
Usage
SIL (Xca, U, distance)
Arguments
Xca |
Matrix or data.frame |
U |
Membership degree matrix |
distance |
If |
Details
Xca
should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then SIL
should be computed using the same standardized data.
Set distance=TRUE
if Xca
is a distance/dissimilarity matrix.
Value
sil.obj |
Vector containing the silhouette indexes for all the objects |
sil |
Value of the silhouette index (mean of |
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References
Kaufman L., Rousseeuw P.J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.
See Also
PC
, PE
, MPC
, SIL.F
, XB
, Fclust
, Mc
Examples
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## silhouette index
sil=SIL(clust$Xca,clust$U)