| PE {fclust} | R Documentation |
Partition entropy
Description
Produces the partition entropy index. The optimal number of clusters k is is such that the index takes the minimum value.
Usage
PE (U, b)
Arguments
U |
Membership degree matrix |
b |
Logarithmic base (default: exp(1)) |
Value
pe |
Value of the partition entropy index |
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References
Bezdek J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.
See Also
PC, MPC, SIL, SIL.F, XB, Fclust, Mc
Examples
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## partition entropy index
pe=PE(clust$U)
[Package fclust version 2.1.1.1 Index]