| NEFRC.noise {fclust} | R Documentation |
Non-Euclidean Fuzzy Relational Clustering with noise cluster
Description
Performs the Non-Euclidean Fuzzy Relational data Clustering algorithm.
The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.
Usage
NEFRC.noise(D, k, m, delta, RS, startU, index, alpha, conv, maxit, seed)
Arguments
D |
Matrix or data.frame containing distances/dissimilarities |
k |
An integer value or vector specifying the number of clusters for which the |
m |
Parameter of fuzziness (default: 2) |
delta |
Noise distance (default: average observed distance) |
RS |
Number of (random) starts (default: 1) |
startU |
Rational start for the membership degree matrix |
index |
Cluster validity index to select the number of clusters: |
alpha |
Weighting coefficient for the fuzzy silhouette index |
conv |
Convergence criterion (default: 1e-9) |
maxit |
Maximum number of iterations (default: 1e+6) |
seed |
Seed value for random number generation (default: NULL) |
Details
If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational start.
Value
Object of class fclust, which is a list with the following components:
U |
Membership degree matrix |
H |
Prototype matrix ( |
F |
Array containing the covariance matrices of all the clusters ( |
clus |
Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2) |
medoid |
Vector containing the indexes of the medoid objects ( |
value |
Vector containing the loss function values for the |
criterion |
Vector containing the values of the cluster validity index |
iter |
Vector containing the numbers of iterations for the |
k |
Number of clusters |
m |
Parameter of fuzziness |
ent |
Degree of fuzzy entropy ( |
b |
Parameter of the polynomial fuzzifier ( |
vp |
Volume parameter ( |
delta |
Noise distance ( |
stand |
Standardization (Yes if |
Xca |
Data used in the clustering algorithm ( |
X |
Raw data ( |
D |
Dissimilarity matrix |
call |
Matched call |
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
References
Davé, R. N., & Sen, S. 2002. Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems, 10(6), 713-727.
See Also
NEFRC, print.fclust, summary.fclust, plot.fclust
Examples
## Not run:
require(cluster)
data("houseVotes")
X <- houseVotes[,-1]
D <- daisy(x = X, metric = "gower")
clust.NEFRC.noise <- NEFRC.noise(D = D, k = 2:6, m = 2, index = "SIL.F")
summary(clust.NEFRC.noise)
plot(clust.NEFRC.noise)
## End(Not run)