Fclust {fclust} | R Documentation |
Fuzzy clustering
Description
Performs fuzzy clustering by using the algorithms available in the package.
Usage
Fclust (X, k, type, ent, noise, stand, distance)
Arguments
X |
Matrix or data.frame |
k |
An integer value specifying the number of clusters (default: 2) |
type |
Fuzzy clustering algorithm: |
ent |
If |
noise |
If |
stand |
Standardization: if |
distance |
If |
Details
The clustering algorithms are run by using default options.
To specify different options, use the corresponding function.
Value
clust |
Object of class |
Author(s)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
See Also
print.fclust
, summary.fclust
, plot.fclust
, FKM
, FKM.ent
, FKM.gk
, FKM.gk.ent
, FKM.gkb
, FKM.gkb.ent
, FKM.med
, FKM.pf
, FKM.noise
, FKM.ent.noise
, FKM.gk.noise
, FKM.gkb.ent.noise
, FKM.gkb.noise
, FKM.gk.ent.noise
,FKM.med.noise
, FKM.pf.noise
, NEFRC
, NEFRC.noise
, Fclust.index
, Fclust.compare
Examples
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=FALSE,noise=FALSE,stand=1,distance=FALSE)
## fuzzy k-means with polynomial fuzzifier
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="polynomial",ent=FALSE,noise=FALSE,stand=1,distance=FALSE)
## fuzzy k-means with entropy regularization
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=TRUE,noise=FALSE,stand=1,distance=FALSE)
## fuzzy k-means with noise cluster
## (excluded the factor column Type (last column))
clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=FALSE,noise=TRUE,stand=1,distance=FALSE)
## End(Not run)