fbst {fbst} | R Documentation |
fbst
Description
The function computes the Full Bayesian Significance Test (FBST) and the e-value, which is the Bayesian evidence against a precise null hypothesis. The function assumes posterior MCMC draws and constructs a posterior density based on a kernel density estimator subsequently.
Usage
fbst(posteriorDensityDraws, nullHypothesisValue, FUN, par,
dimensionTheta, dimensionNullset, dim, gridSize)
Arguments
posteriorDensityDraws |
Vector of (MCMC) posterior parameter draws. |
nullHypothesisValue |
Parameter value of the precise null hypothesis. |
FUN |
Reference function. |
par |
Additional parameters of the reference function. |
dimensionTheta |
Dimension of the parameter space, defaults to 1 and can be changed to 2. Dimensions larger than 2 are currently not supported. |
dimensionNullset |
Dimension of the null set corresponding to the null hypothesis. |
dim |
Dimension of the posterior subspace over which integration is required. Defaults to 1. Can be changed to 2 if required. |
gridSize |
Grid size for the multivariate two-dimensional kernel density estimation in case dimensionTheta=2. Defaults to 1000. |
Details
If no reference function is specified, a flat reference function r(\theta)=1
is used as default reference function. Note that the posterior dimension dim defaults to 1, and if dim=2, only flat reference functions are supported. Thus, specifying FUN or par has no effect when dim=2.
Value
Returns an object of class fbst.
Author(s)
Riko Kelter
References
For a details, see: https://link.springer.com/article/10.3758/s13428-021-01613-6.
Examples
set.seed(57)
grp1=rnorm(50,0,1.5)
grp2=rnorm(50,0.8,3.2)
p = as.vector(BayesFactor::ttestBF(x=grp1,y=grp2,
posterior = TRUE, iterations = 3000,
rscale = "medium")[,4])
# flat reference function
res = fbst(posteriorDensityDraws = p, nullHypothesisValue = 0,
dimensionTheta = 2, dimensionNullset = 1)
summary(res)
plot(res)
# medium Cauchy C(0,1) reference function
res_med = fbst(posteriorDensityDraws = p, nullHypothesisValue = 0, dimensionTheta = 2,
dimensionNullset = 1, FUN = dcauchy, par = list(location = 0, scale = sqrt(2)/2))
summary(res_med)
plot(res_med)