Simulation for Factorial Designs


[Up] [Top]

Documentation for package ‘faux’ version 1.2.1

Help Pages

add_between Add between factors
add_contrast Add a contrast to a data frame
add_random Add random factors to a data structure
add_ranef Add random effects to a data frame
add_recode Recode a categorical column
add_within Add within factors
average_r2tau_0 Average r to Random Intercept SD
beta2norm Convert beta to normal
binom2norm Convert binomial to normal
check_design Validates the specified design
check_mixed_design Get random intercepts for subjects and items
check_sim_stats Get parameters from a data table
codebook Create PsychDS Codebook from Data
contr_code_anova Anova code a factor
contr_code_difference Difference code a factor
contr_code_helmert Helmert code a factor
contr_code_poly Polynomial code a factor
contr_code_sum Sum code a factor
contr_code_treatment Treatment code a factor
convert_r Convert r for NORTA
cormat Make a correlation matrix
cormat_from_triangle Make Correlation Matrix from Triangle
distfuncs Get distribution functions
dlikert Likert density function
faceratings Attractiveness ratings of faces
faux faux: Simulation Functions.
faux_options Set/get global faux options
fh_bounds Get Fréchet-Hoefding bounds
fix_name_labels Fix name labels
fr4 Attractiveness rating subset
gamma2norm Convert gamma to normal
getcols Get data columns
get_coefs Get Coefficients from Data
get_design Get design
get_design_long Get design from long data
get_params Get parameters from a data table
interactive_design Set design interactively
is_pos_def Check a Matrix is Positive Definite
json_design Convert design to JSON
long2wide Convert data from long to wide format
make_id Make ID
messy Simulate missing data
nested_list Output a nested list in RMarkdown list format
norm2beta Convert normal to beta
norm2binom Convert normal to binomial
norm2gamma Convert normal to gamma
norm2likert Convert normal to likert
norm2norm Convert normal to normal
norm2pois Convert normal to poisson
norm2trunc Convert normal to truncated normal
norm2unif Convert normal to uniform
plikert Likert distribution function
plot.design Plot design
plot.faux Plot design
plot_design Plot design
pos_def_limits Limits on Missing Value for Positive Definite Matrix
qlikert Likert quantile function
readline_check Check readline input
rlikert Random Likert distribution
rmulti Multiple correlated distributions
rnorm_multi Multiple correlated normal distributions
rnorm_pre Make a normal vector correlated to existing vectors
sample_from_pop Sample Parameters from Population Parameters
set_design Set design
sim_design Simulate data from design
sim_df Simulate an existing dataframe
sim_joint_dist Simulate category joint distribution
sim_mixed_cc Generate a cross-classified sample
sim_mixed_df Generate a mixed design from existing data
std_alpha2average_r Standardized Alpha to Average R
trunc2norm Convert truncated normal to normal
unif2norm Convert uniform to normal
unique_pairs Make unique pairs of level names for correlations
wide2long Convert data from wide to long format