gen_friedman {fastshap} | R Documentation |
Friedman benchmark data
Description
Simulate data from the Friedman 1 benchmark problem. These data were originally described in Friedman (1991) and Breiman (1996). For details, see sklearn.datasets.make_friedman1.
Usage
gen_friedman(
n_samples = 100,
n_features = 10,
n_bins = NULL,
sigma = 0.1,
seed = NULL
)
Arguments
n_samples |
Integer specifying the number of samples (i.e., rows) to generate. Default is 100. |
n_features |
Integer specifying the number of features to generate. Default is 10. |
n_bins |
Integer specifying the number of (roughly) equal sized bins to
split the response into. Default is |
sigma |
Numeric specifying the standard deviation of the noise. |
seed |
Integer specifying the random seed. If |
Note
This function is mostly used for internal testing.
References
Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19 (1), pages 1-67.
Examples
gen_friedman()