infoliu {fastliu} | R Documentation |
Information Criteria for Liu Regression
Description
For each value of lambda
, infoliu calculates
the values of the AIC and BIC model selection criteria.
Model selection criteria are based on the degrees of the freedom,
\texttt{df}=\mathrm{trace}\left(\mathbf{H}_\lambda\right)
of the Liu regression model where \mathbf{H}
is the hat matrix of
Liu regression model.
Usage
infoliu(obj)
Arguments
obj |
A |
Value
infoliu
returns the matrix of information criteria
for each value of the regularization parameter lambda
.
Author(s)
Murat Genç
References
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transaction on Automatic Control, 9(6), 716-723. doi:10.1109/TAC.1974.1100705.
Liu, K. (1993). A new class of blased estimate in linear regression. Communications in Statistics-Theory and Methods, 22(2), 393-402. doi:10.1080/03610929308831027.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461-464. doi:10.1214/aos/1176344136.
See Also
Examples
data("Hitters")
Hitters <- na.omit(Hitters)
X <- model.matrix(Salary ~ ., Hitters)[, -1]
y <- Hitters$Salary
lam <- seq(0, 1, 0.01)
liu.mod <- liureg(X, y, lam)
infoliu(liu.mod)