kqr {fastkqr} | R Documentation |
Solve the kernel quantile regression. The solution path is computed
at a grid of values of tuning parameter lambda
.
Description
Solve the kernel quantile regression. The solution path is computed
at a grid of values of tuning parameter lambda
.
Usage
kqr(
x,
y,
lambda,
tau,
delta = 0.125,
eps = 1e-05,
maxit = 1e+06,
gam = 1e-07,
sigma = NULL,
is_exact = FALSE
)
Arguments
x |
A numerical input matrix. The dimension is |
y |
Response variable. The length is |
lambda |
A user-supplied |
tau |
A user-supplied |
delta |
The smoothing index for |
eps |
Stopping criterion. |
maxit |
Maximum number of iterates. |
gam |
A small number for numerical stability. |
sigma |
Kernel bandwidth. |
is_exact |
Exact or approximated solutions. Default is |
Details
The function implements an accelerated proximal gradient descent to solve kernel quantile regression.
Value
An object with S3 class kqr
alpha |
An |
lambda |
The |
delta |
The smoothing index. |
npass |
The total number of iterates used to train the classifier. |
jerr |
Warnings and errors; 0 if none. |
info |
A list includes some settings used to fit this object: |
.
Examples
library(MASS)
data(GAGurine)
x <- as.matrix(GAGurine$Age)
y <- GAGurine$GAG
lambda <- 10^(seq(1, -4, length.out=30))
fit <- kqr(x, y, lambda=lambda, tau=0.1, is_exact=TRUE)