predict.cocktail {fastcox} | R Documentation |
make predictions from a "cocktail" object.
Description
Similar to other predict methods, this functions predicts fitted values, link function and more from a fitted cocktail
object. This function is modified based on the predict
function from the glmnet
package.
Usage
## S3 method for class 'cocktail'
predict(object,newx,s=NULL,type=c("link","response","coefficients","nonzero"),...)
Arguments
object |
fitted |
newx |
matrix of new values for |
s |
value(s) of the penalty parameter |
type |
type of prediction required.
|
... |
Not used. Other arguments to predict. |
Details
s
is the new vector at which predictions are requested. If s
is not in the lambda sequence used for fitting the model, the predict
function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda
indices.
Value
The object returned depends on type.
Author(s)
Yi Yang and Hui Zou
Maintainer: Yi Yang <yi.yang6@mcgill.ca>
References
Yang, Y. and Zou, H. (2013),
"A Cocktail Algorithm for Solving The Elastic Net Penalized Cox's Regression in High Dimensions", Statistics and Its Interface, 6:2, 167-173.
https://github.com/emeryyi/fastcox
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
"Regularization Paths for Generalized Linear Models via Coordinate
Descent", http://www.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
http://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011)
"Regularization Paths for Cox's Proportional Hazards Model via
Coordinate Descent", Journal of Statistical Software, Vol. 39(5)
1-13
http://www.jstatsoft.org/v39/i05/
See Also
coef
method
Examples
data(FHT)
m1<-cocktail(x=FHT$x,y=FHT$y,d=FHT$status,alpha=0.5)
predict(m1,type="nonzero")
predict(m1,newx=FHT$x[1:5,],type="response")