UnetBlock {fastai} | R Documentation |
UnetBlock
Description
A quasi-UNet block, using 'PixelShuffle_ICNR upsampling'.
Usage
UnetBlock(
up_in_c,
x_in_c,
hook,
final_div = TRUE,
blur = FALSE,
act_cls = nn()$ReLU,
self_attention = FALSE,
init = nn()$init$kaiming_normal_,
norm_type = NULL,
ks = 3,
stride = 1,
padding = NULL,
bias = NULL,
ndim = 2,
bn_1st = TRUE,
transpose = FALSE,
xtra = NULL,
bias_std = 0.01,
dilation = 1,
groups = 1,
padding_mode = "zeros"
)
Arguments
up_in_c |
up_in_c parameter |
x_in_c |
x_in_c parameter |
hook |
The hook is set to this intermediate layer to store the output needed for this block. |
final_div |
final div |
blur |
blur is used to avoid checkerboard artifacts at each layer. |
act_cls |
activation |
self_attention |
self_attention determines if we use a self-attention layer |
init |
initializer |
norm_type |
normalization type |
ks |
kernel size |
stride |
stride |
padding |
padding mode |
bias |
bias |
ndim |
number of dimensions |
bn_1st |
batch normalization 1st |
transpose |
transpose |
xtra |
xtra |
bias_std |
bias standard deviation |
dilation |
dilation |
groups |
groups |
padding_mode |
The mode of padding |
Value
None
[Package fastai version 2.2.2 Index]