GANLearner_from_learners {fastai} | R Documentation |
GAN Learner from learners
Description
Create a GAN from 'learn_gen' and 'learn_crit'.
Usage
GANLearner_from_learners(
gen_learn,
crit_learn,
switcher = NULL,
weights_gen = NULL,
gen_first = FALSE,
switch_eval = TRUE,
show_img = TRUE,
clip = NULL,
cbs = NULL,
metrics = NULL,
loss_func = NULL,
opt_func = Adam(),
lr = 0.001,
splitter = trainable_params(),
path = NULL,
model_dir = "models",
wd = NULL,
wd_bn_bias = FALSE,
train_bn = TRUE,
moms = list(0.95, 0.85, 0.95)
)
Arguments
gen_learn |
generator learner |
crit_learn |
discriminator learner |
switcher |
switcher |
weights_gen |
weights generator |
gen_first |
generator first |
switch_eval |
switch evaluation |
show_img |
show image or not |
clip |
clip value |
cbs |
Cbs is one or a list of Callbacks to pass to the Learner. |
metrics |
It is an optional list of metrics, that can be either functions or Metrics. |
loss_func |
loss function |
opt_func |
The function used to create the optimizer |
lr |
learning rate |
splitter |
It is a function that takes self.model and returns a list of parameter groups (or just one parameter group if there are no different parameter groups). |
path |
The folder where to work |
model_dir |
Path and model_dir are used to save and/or load models. |
wd |
It is the default weight decay used when training the model. |
wd_bn_bias |
It controls if weight decay is applied to BatchNorm layers and bias. |
train_bn |
It controls if BatchNorm layers are trained even when they are supposed to be frozen according to the splitter. |
moms |
The default momentums used in Learner$fit_one_cycle. |
Value
None