DynamicUnet {fastai} | R Documentation |
DynamicUnet
Description
Create a U-Net from a given architecture.
Usage
DynamicUnet(
encoder,
n_classes,
img_size,
blur = FALSE,
blur_final = TRUE,
self_attention = FALSE,
y_range = NULL,
last_cross = TRUE,
bottle = FALSE,
act_cls = nn()$ReLU,
init = nn()$init$kaiming_normal_,
norm_type = NULL
)
Arguments
encoder |
encoder |
n_classes |
number of classes |
img_size |
image size |
blur |
blur is used to avoid checkerboard artifacts at each layer. |
blur_final |
blur final is specific to the last layer. |
self_attention |
self_attention determines if we use a self attention layer at the third block before the end. |
y_range |
If y_range is passed, the last activations go through a sigmoid rescaled to that range. |
last_cross |
last cross |
bottle |
bottle |
act_cls |
activation |
init |
initializer |
norm_type |
normalization type |
Value
None
[Package fastai version 2.2.2 Index]